2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


2004 ◽  
Author(s):  
Mark E. Seaver ◽  
Stephen T. Trickey ◽  
Jonathan M. Nichols ◽  
Linda Moniz ◽  
Lou Pecora ◽  
...  

2020 ◽  
Vol 13 (2) ◽  
pp. 333-343 ◽  
Author(s):  
刘军号 LIU Jun-hao ◽  
李瑞辰 LI Rui-chen

1997 ◽  
Vol 503 ◽  
Author(s):  
Edward G. Nawy ◽  
P. E.

ABSTRACTThis investigation involves the identification and use of a novel type of fiber optic sensors in monitoring the deformation behavior of critical sections of the structural concrete elements and transforming them into smart systems. Basic operating principles of the Bragg-grating sensors identified in this work are proved to be feasible. Deformational behavior was studied of high performance concrete composite beams reinforced with prestressed prisms and instrumented with Bragg Grating fiber optic sensors. The experimental techniques using those sensors for evaluating their behavior at service load stages, and the potential of this technique for on-line, real-time monitoring of existing constructed concrete structures are presented.


Author(s):  
T. Wipiejewski ◽  
F. Ho ◽  
B. Lui ◽  
W. Hung ◽  
F.-W. Tong ◽  
...  

1996 ◽  
Vol 43 (3) ◽  
pp. 1030-1037 ◽  
Author(s):  
C.J. Dale ◽  
P.W. Marshall ◽  
M.E. Fritz ◽  
M. de La Chapelle ◽  
M.A. Carts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document