Reduction of Voltage Ripple for Single-phase Chopper Integrated ANPCI based on Hysteresis Voltage and Chopper Current Control Methods

Author(s):  
Jagath Vallabhai Missula ◽  
Ravindranath Adda ◽  
Praveen Tripathy
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3230
Author(s):  
Milovan Majstorovic ◽  
Marco Rivera ◽  
Leposava Ristic ◽  
Patrick Wheeler

The operation of single-phase Modular Multilevel Converter (MMC) is analyzed in the paper. A mathematical model of the converter is developed and described, based on which the structure and selection of parameters for Classical Control and Optimal Switching State Model Predictive Control (OSS-MPC) are defined. Additionally, the procedure for the determination of circuit parameters, such as submodule capacitance and arm inductance, is described and carried out. The listed control methods are designed and evaluated in Virtual Hardware-in-the-Loop together with single-phase MMC power circuit, regarding three control objectives: AC current control, voltage balancing control and circulating current control. Control methods are evaluated for both steady-state and transient performance and compared based on nine criteria: AC current reference tracking, THD of AC current and voltage, submodule capacitor voltage balancing, total submodule voltage control, circulating current magnitude and THD, number of control parameters and computational complexity. This is the first time that a fair comparison between Classical Control and MPC is considered in literature, resulting in superior performance of both control methods regarding four different criteria and the same performance regarding AC current reference tracking.


2018 ◽  
Vol 16 (5) ◽  
pp. 1424-1431 ◽  
Author(s):  
Arthur Costa de Souza ◽  
Daniel Tobias da Silva Borges ◽  
Ivan Nunes Santos ◽  
Jose Rubens Macedo

Author(s):  
Yong Yang ◽  
Jianyu Pan ◽  
Huiqing Wen ◽  
Mingdi Fan ◽  
Rong Chen ◽  
...  

Author(s):  
Wolf Schulze ◽  
Maurizio Zajadatz ◽  
Michael Suriyah ◽  
Thomas Leibfried

AbstractA test bed for the evaluation of novel control methods of inverters for renewable power generation is presented. The behavior of grid-following and grid-forming control in a test scenario is studied and compared.Using a real-time capable control platform with a cycle time of 50 µs, control methods developed with Matlab/Simulink can be implemented. For simplicity, a three-phase 4‑quadrant voltage amplifier is used instead of an inverter. Thus, the use of modulation and switched power semiconductors can be avoided. In order to show a realistic behavior of a grid-side filter, passive components can be automatically connected as L‑, LC- or LCL-filter. The test bed has a nominal active power of 43.6 kW and a nominal voltage of 400 V.As state-of-the-art grid-following control method, a current control in the d/q-system is implemented in the test bed. A virtual synchronous machine, the Synchronverter, is used as grid-forming control method. In combination with a frequency-variable grid emulation, the behavior of both control methods is studied in the event of a load connection in an island grid environment.


2019 ◽  
Vol 9 (2) ◽  
pp. 252 ◽  
Author(s):  
Ziqian Zhang ◽  
Cihan Gercek ◽  
Herwig Renner ◽  
Angèle Reinders ◽  
Lothar Fickert

This article presents an in-situ comparative analysis and power quality tests of a newly developed photovoltaic charging system for e-bikes. The various control methods of the inverter are modeled and a single-phase grid-connected inverter is tested under different conditions. Models are constituted for two current control methods; the proportional resonance and the synchronous rotating frames. In order to determine the influence of the control parameters, the system is analyzed analytically in the time domain as well as in the frequency domain by simulation. The tests indicated the resonance instability of the photovoltaic inverter. The passivity impedance-based stability criterion is applied in order to analyze the phenomenon of resonance instability. In conclusion, the phase-locked loop (PLL) bandwidth and control parameters of the current loop have a major effect on the output admittance of the inverter, which should be adjusted to make the system stable.


Sign in / Sign up

Export Citation Format

Share Document