A two-stage MILP formulation for source-load coordinated dispatch with wind power considering peak-valley regulation and ramping requirements

Author(s):  
Rufeng Zhang ◽  
Guoqing Li ◽  
Houhe Chen ◽  
Xue Li ◽  
Tao Jiang ◽  
...  
Keyword(s):  
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yang Liu ◽  
Yanli Ye ◽  
Xianbang Chen ◽  
Huaqiang Li ◽  
Yuan Huang

Wind power generation has been widely deployed in the modern power system due to the issues of energy crisis and environment pollution. Meanwhile, the microgrid is gradually regarded as a feasible way to connect and accommodate the distributed wind power generations. Recently, more research studies also focus on incorporating various energy systems, for example, heat and gas into the microgrid in terms of satisfying different types of load demands. However, the uncertainty of wind power significantly impacts the economy of the integrated power-heat-gas microgrid. To deal with this issue, this paper presents a two-stage robust model to achieve the optimal day-ahead economic dispatch strategy considering the worst-case wind power scenarios. The first stage makes the initial day-ahead dispatch decision before the observation of uncertain wind power. The additional adjustment action is made in the second stage once the wind power uncertainty is observed. Based on the duality theory and Big-M approach, the original second-stage problem can be dualized and linearized. Therefore, the column-and-constraint generation algorithm can be further implemented to achieve the optimal day-ahead economic dispatch strategy for the integrated power-heat-gas microgrid. The experimental results indicate the effectiveness of the presented approach for achieving operation cost reduction and promoting wind power utilization. The robustness and the economy of the two-stage robust model can be balanced, of which the performances significantly outperform those of the single-stage robust model and the deterministic model.


2019 ◽  
Vol 10 (1) ◽  
pp. 181
Author(s):  
Peng Kang ◽  
Wei Guo ◽  
Weigang Huang ◽  
Zejing Qiu ◽  
Meng Yu ◽  
...  

The development of DC distribution network technology has provided a more efficient way for renewable energy accommodation and flexible power supply. A two-stage stochastic scheduling model for the hybrid AC/DC distribution network is proposed to study the active-reactive power coordinated optimal dispatch. In this framework, the wind power scenario set is utilized to deal with its uncertainty in real time, which is integrated into the decision-making process at the first stage. The charging/discharging power of ESSs and the transferred active/reactive power by VSCs can be adjusted when wind power uncertainty is observed at the second stage. Moreover, the proposed model is transformed into a mixed integer second-order cone programming optimization problem by linearization and second-order cone relaxation techniques to solve. Finally, case studies are implemented on the modified IEEE 33-node AC/DC distribution system and the simulation results demonstrate the effectiveness of the proposed stochastic scheduling model and solving method.


Sign in / Sign up

Export Citation Format

Share Document