Energy storage control based on user clustering and battery capacity allocation

Author(s):  
Heechang Ryu ◽  
Yohan Jung ◽  
Jinkyoo Park
2020 ◽  
Vol 15 (4) ◽  
pp. 496-505 ◽  
Author(s):  
Yu Zhang ◽  
Zhe Yan ◽  
Cui Cui Zhou ◽  
Tie Zhou Wu ◽  
Yue Yang Wang

Abstract The hybrid energy storage system (HESS) is a key component for smoothing fluctuation of power in micro-grids. An appropriate configuration of energy storage capacity for micro-grids can effectively improve the system economy. A new method for HESS capacity allocation in micro-grids based on the artificial bee colony (ABC) algorithm is proposed. The method proposed a power allocation strategy based on low pass filter (LPF) and fuzzy control. The strategy coordinates battery and supercapacitor operation and improves the battery operation environment. The fuzzy control takes the state of charge (SOC) of the battery and supercapacitors as the input and the correction coefficient of the time constant of the LPF filter as the output. The filter time constant of the LPF is timely adjusted, and the SOC of the battery and supercapacitor is stable within the limited range so that the overcharge and over-discharge of the battery can be avoided, and the lifetime of the battery is increased. This method also exploits sub-algorithms for supercapacitors and battery capacity optimization. Besides, the Monte Carlo simulation of the statistic model is implemented to eliminate the influence of uncertain factors such as wind speed, light intensity and temperature. The ABC algorithm is used to optimize the capacity allocation of hybrid energy storage, which avoids the problem of low accuracy and being easy to fall into the local optimal solution of the supercapacitors and battery capacity allocation sub-algorithms, and the optimal allocation of the capacity of the HESS is determined. By using this method, the number of supercapacitors required for the HESS is unchanged, and the number of battery is reduced from 75 to 65, which proves the rationality and economy of the proposed method.


Author(s):  
Tao Chen ◽  
Ciwei Gao ◽  
Hongxun Hui ◽  
Qiushi Cui ◽  
Huan Long

Lithium-ion battery-based energy storage systems have been widely utilized in many applications such as transportation electrification and smart grids. As a key health status indicator, battery performance would highly rely on its capacity, which is easily influenced by various electrode formulation parameters within a battery. Due to the strongly coupled electrical, chemical, thermal dynamics, predicting battery capacity, and analysing the local effects of interested parameters within battery is significantly important but challenging. This article proposes an effective data-driven method to achieve effective battery capacity prediction, as well as local effects analysis. The solution is derived by using generalized additive models (GAM) with different interaction terms. Comparison study illustrate that the proposed GAM-based solution is capable of not only performing satisfactory battery capacity predictions but also quantifying the local effects of five important battery electrode formulation parameters as well as their interaction terms. Due to data-driven nature and explainability, the proposed method could benefit battery capacity prediction in an efficient manner and facilitate battery control for many other energy storage system applications.


2021 ◽  
Author(s):  
Hassan Hayajneh ◽  
Xuewei Zhang

To minimize the curtailment of renewable generation and incentivize grid-scale energy storage deployment, a concept of combining stationary and mobile applications of battery energy storage systems built within renewable energy farms is proposed. A simulation-based optimization model is developed to obtain the optimal design parameters such as battery capacity and power ratings by solving a multi-objective optimization problem that aims to maximize the economic profitability, the energy provided for transportation electrification, the demand peak shaving, and the renewable energy utilized. Two applications considered for the stationary energy storage systems are the end-consumer arbitrage and frequency regulation, while the mobile application envisions a scenario of a grid-independent battery-powered electric vehicle charging station network. The charging stations receive supplies from the energy storage system that absorbs renewable energy, contributing to a sustained DC demand that helps with revenues. Representative results are presented for two operation modes and different sets of weights assigned to the objectives. Substantial improvement in the profitability of combined applications over single stationary applications is shown. Pareto frontier of a reduced dimensional problem is obtained to show the trade-off between design objectives. This work could pave the road for future implementations of the new form of energy storage systems.<br>


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1642 ◽  
Author(s):  
Kan Xie ◽  
Weifeng Zhong ◽  
Weijun Li ◽  
Yinhao Zhu

This paper studies capacity allocation of an energy storage (ES) device which is shared by multiple homes in smart grid. Given a time-of-use (TOU) tariff, homes use the ES to shift loads from peak periods to off-peak periods, reducing electricity bills. In the proposed ES sharing model, the ES capacity has to be allocated to homes before the homes’ load data is completely known. To this end, an online ES capacity allocation algorithm is developed based on the online convex optimization framework. Under the online algorithm, the complex allocation problem can be solved round by round: at each round, the algorithm observes current system states and predicts a decision for the next round. The proposed algorithm is able to minimize homes’ costs by learning from home load data in a serial fashion. It is proven that the online algorithm can ensure zero average regret and long-term budget balance of homes. Further, a distributed implementation of the online algorithm is proposed based on alternating direction method of multipliers framework. In the distributed implementation, the one-round system problem is decomposed into multiple subproblems that can be solved by homes locally, so that an individual home does not need to send its private load data to any other. In simulation, actual home load data and a TOU tariff of the United States are used. Results show that the proposed online approach leads to the lowest home costs, compared to other benchmark approaches.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Xiyun Yang ◽  
Jie Ren ◽  
Xiangjun Li ◽  
Hang Zhang

Under the application scenario of smoothing photovoltaic (PV) power fluctuation, a novel typical daily power curve mining method is developed for a battery energy storage system (BESS) that utilizes the power probability distribution and Bloch spherical quantum genetic algorithm. The charging/discharging of BESS is analyzed by applying fuzzy-c means clustering techniques. In the mining approach, at any sample time, those distribution intervals containing concentrated power points are individually located by using probability distribution information and Bloch spherical quantum genetic algorithm. Character power for the specified interval can also be determined using Bloch spherical quantum genetic algorithm. Next, a roulette principal is employed, to determine one value from the character power data as a typical value of the mined power curve at the sample time. By connecting the typical power at each sample time, the typical daily power curve for BESS is achieved. Based on typical power curve, decision-maker can master the important operating parameters of BESS and analyze optimal capacity allocation. By error evaluation indexes between the mined typical daily power curve and power curve under different weather patterns, the simulation results verify that the mined power curve can address the operating power of the BESS under different weather patterns.


Author(s):  
Guido Carpinelli ◽  
Fabio Mottola ◽  
Daniela Proto

Abstract This paper analyzes the influence of technology uncertainties on the sizing of battery systems. The sizing is based on the minimization of the costs incurred by the end customer and is performed considering demand response applications in the frame of time of use tariffs. The randomness of i) battery round trip efficiency, ii) life time duration, iii) unit costs related to battery capacity, power conversion system, operation and maintenance and replacement is taken into account in order to identify the most convenient solution from an economic and technical point of view. Based on the load requests of actual industrial and residential loads, numerical applications have been performed. The results provided useful information regarding the influence uncertainties have in the choice of a battery energy storage system.


Sign in / Sign up

Export Citation Format

Share Document