Design of a Low Inductance Power Module Based on Low Temperature Co-fired Ceramic

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000032-000038
Author(s):  
Atanu Dutta ◽  
Simon S. Ang

Abstract Efficient, compact, and reliable power electronic modules are building blocks of modern day power electronic systems. In recent times, wide bandgap semiconductor devices, such as, silicon carbide (SiC) and gallium nitride (GaN), are widely investigated and used in the power electronic modules to realize power dense, highly efficient, and fast switching modules for various applications. For high power applications is it required to parallel and series several devices to achieve high current and high voltage specifications, which results in larger current conducting traces. One of the major obstacles in using these wideband gap power semiconductor devices are the internal module stray inductance that is associated with these current conducting traces. With increasing demand for higher switching frequency, the internal module parasitic inductance must be reduced to as minimum as possible in order to utilize the full potential of the wide bandgap devices. A multi-layer approach of low-temperature co-fired ceramic (LTCC) to package the wide bandgap devices is investigated. The multi-layer design freedom by using LTCC can be utilized to reduce the footprint of the overall power module, electrical interconnects, hence, reducing the package parasitic inductance. LTCC also facilitates high temperature operations and has a coefficient of thermal expansion matching with wide bandgap devices. In this paper, we report on a LTCC based power module design where LTCC is utilized as an isolation layer between the source and the drain of the power devices. A simulation based parasitic inductance analysis and electro-thermal-mechanical study is performed using ANSYS Workbench Tools to investigate the feasibility of this LTCC based design.

2019 ◽  
Vol 16 (4) ◽  
pp. 176-181
Author(s):  
Hoang Linh Bach ◽  
Daniel Dirksen ◽  
Christoph Blechinger ◽  
Tobias Maximilian Endres ◽  
Christoph Friedrich Bayer ◽  
...  

Abstract This study encompasses the development of a high-voltage and high-temperature–capable package for power electronic applications based on the embedding of silicon carbide (SiC) semiconductor devices in the ceramic circuit carrier such as the direct bonded copper (DBC) substrate. By sealing semiconductor devices into DBC substrates, high temperature, high voltage, and high current capability as well as high corrosion resistance can be achieved compared with the state-of-the-art printed circuit board (PCB) embedding technology. The power devices are attached with high-temperature stable solder and sinter material and are surrounded by thermal conductive ceramic and high-temperature–capable potting materials that enable the complete package to operate at 250°C or above. Furthermore, the single embedded packages can be stacked together to multilevel DBC topologies with increased voltage blocking characteristics. Thus, current limits of the PCB and low-temperature cofired ceramic–based multilayer solutions are exceeded and will be confirmed in the course of this study. This package is designed to carry out the maximal performance of SiC and future wide bandgap devices. It is a promising solution not only for applications in harsh ambient environments such as aerospace and turbine, geothermal well logging, and downhole oil and gas wells but also for hybrid electric/electric vehicle and energy conversion.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 43
Author(s):  
Marco Mangiagalli ◽  
Marina Lotti

β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1885
Author(s):  
Amjad Almatrood ◽  
Aby K. George ◽  
Harpreet Singh

Quantum-dot cellular automata (QCA) technology is considered to be a possible alternative for circuit implementation in terms of energy efficiency, integration density and switching frequency. Multiplexer (MUX) can be considered to be a suitable candidate for designing QCA circuits. In this paper, two different structures of energy-efficient 2×1 MUX designs are proposed. These MUXes outperform the best existing design in terms of power consumption with approximate reductions of 26% and 35%. Moreover, similar or better performance factors such as area and latency are achieved compared to the available designs. These MUX structures can be used as fundamental energy-efficient building blocks for replacing the majority-based structures in QCA. The scalability property of the proposed MUXes is excellent and can be used for energy-efficient complex QCA circuit designs.


Sign in / Sign up

Export Citation Format

Share Document