Effect of Rolling Bearing on Dynamic Characteristics of Seal-Rotor System

Author(s):  
Yuegang Luo ◽  
Pengfei Wang ◽  
Haifeng Jia ◽  
Hao Xu ◽  
Chenyong Wang
Author(s):  
Yuegang Luo ◽  
Pengfei Wang ◽  
Haifeng Jia ◽  
Fengchao Huang

Abstract Labyrinth seals are widely used to prevent fluid leakage in high-low pressure areas of the rotating machinery. However, the rub-impact fault easily occurs in labyrinth seals. Considering the influence of gyroscopic effect, a finite element model of seal-rubbing rotor system is established in this study based on the Muszynska seal force model, the rolling bearing force model and the nonlinear rubbing force model. The vibration characteristics under the coupling faults of airflow excitation and rub-impact are analyzed. Firstly, the response of the system without rub-impact fault is numerically simulated and verified by experiments. Subsequently, the dynamic characteristics of the rotor under the conditions of slight rub-impact and severe rub-impact faults are analyzed. Finally, the influence of the rub-impact parameters is further studied. The results indicate that when the rub-impact fault is absent, airflow excitation occurs at a certain speed, which exhibits the characteristics of frequency locking and combination frequency. The coupling dynamic responses of airflow-induced vibration and rub-impact fault show a rich spectrum of nonlinear phenomena, which is closely related to the degree of rub-impact. This study may provide a theoretical basis for the detection and diagnosis of fluid-induced rub-impact fault in labyrinth seal-rotor systems.


2021 ◽  
Vol 11 (23) ◽  
pp. 11219
Author(s):  
Hongxian Zhang ◽  
Xuejun Li ◽  
Dalian Yang ◽  
Lingli Jiang

In order to improve the thrust-weight ratio, modern aeroengines generally adopt a coaxial dual-rotor system. Factors such as manufacturing errors, assembly errors, bearing wear, and structural deformation can cause misalignment failures in a dual-rotor system. Supporting misalignment is one of the common types of misalignments in a dual-rotor system. To analyze the vibration characteristics of misalignment faults, in this study, we aim to build a finite element model of a dual-rotor system with supporting misalignment. The bearing loads caused by supporting misalignment are calculated using the three-bending moment equation method. Bearing loads are introduced into the dynamic model of the dual-rotor system. The influence of supporting misalignment at different bearings on the dynamic characteristics of the rotor system is investigated based on the supporting misalignment model. Studies have shown that supporting misalignment at different bearings has similar effects on the dynamic characteristics of the dual-rotor system. The proposed supporting misalignment model is more adaptable than the coupling misalignment model. It indicates that the damping of a rolling bearing should be considered in the dynamic analysis of a dual-rotor system although the value of the damping is not large. An experimental analysis is carried out. The simulation results are in good agreement with the experimental results.


2021 ◽  
Author(s):  
Pengfei Wang ◽  
Hongyang Xu ◽  
Yang Yang ◽  
Hui Ma ◽  
Duo He ◽  
...  

Abstract The rotor misalignment fault, which occurs only second to unbalance, easily occurs in the practical rotating machinery system. Rotor misalignment can be further divided into coupling misalignment and bearing misalignment. However, most of the existing references only analyze the effect of coupling misalignment on the dynamic characteristics of the rotor system, and ignore the change of bearing excitation caused by misalignment. Based on the above limitations, a five degrees of freedom nonlinear restoring force mathematical model is proposed, considering misalignment of bearing rings and clearance of cage pockets. The finite element model of the rotor is established based on the Timoshenko beam element theory. The coupling misalignment excitation force and rotor unbalance force are introduced. Finally, the dynamic model of the ball bearing-coupling-rotor system is established. The radial and axial vibration responses of the system under misalignment fault are analyzed by simulation. The results show that the bearing misalignment significantly influences the dynamic characteristics of the system in the low-speed range, so bearing misalignment should not be ignored in modeling. With the increase of rotating speed, rotor unbalance and coupling misalignment have a greater impact. Misalignment causes periodic changes in bearing contact angle, radial clearance, and ball rotational speed. It also leads to reciprocating impact and collision between the ball and cage. In addition, misalignment increases the critical speed and the axial vibration of the system. The results can provide a basis for health monitoring and misalignment fault diagnosis of the rolling bearing-rotor system.


2021 ◽  
Author(s):  
GHASEM TEHRANI GHANNAD ◽  
CHIARA GASTALDI ◽  
Teresa Berruti

2021 ◽  
Vol 12 (1) ◽  
pp. 677-688
Author(s):  
Xinran Wang ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xingjian Dai ◽  
Haisheng Chen

Abstract. The tooth surface friction effects and the resulting tooth surface contact temperature are important factors for the dynamic characteristics of a gear-rotor system in compressed air energy storage (CAES). Therefore, a 3∘ of freedom finite-element model of the system is set up in which the lubrication state of the gear pair, tooth surface friction, contact temperature of the tooth surface, backlash and unbalanced excitation are considered. The friction coefficient is calculated according to the variation of the lubrication state, and the tooth surface contact temperature is derived based on the friction coefficient. The tooth profile deformation caused by the change in the contact temperature is calculated, and the resulting effects on backlash and comprehensive meshing stiffness are considered. The influence of rotating speed, torque load and viscosity of lubricating oil on the system response is studied, and the variation of the friction coefficient, flash temperature of the tooth surface, pressure of the tooth surface and so on are discussed in detail. The results indicate that when the friction coefficient is derived according to the variation of the lubrication state, the variation of the contact temperature of the tooth surface with rotating speed is quite different from that calculated based on a friction coefficient which is set artificially. This leads to a new variation of the dynamic response of the gear-rotor system, and the method of stabilizing the operation of the system is put forward based on the optimization curve for the operation of the system. The results obtained in this paper will provide a reference for the study and design of a gear-rotor system in CAES.


Author(s):  
Xi Chen ◽  
Xiaohua Gan ◽  
Guangming Ren

During aircraft maneuvering flights, engine's rotor-bearing systems are subjected to parametric excitations and additional inertial forces, which may cause severe vibration and abnormal operation. Based on Lagrange's principle combined with finite element modeling, the differential equations of motion for a squeeze film damped rotor-bearing system mounted on an aircraft in maneuvering flight are derived. Using Newmark–Hilber–Hughes–Taylor integration method, dynamic characteristics of the nonlinear rotor system under maneuvering flight are investigated. The factors are considered, involving mass unbalance, oil–film force, gravity, parametric excitations and additional inertial forces, and instantaneous static eccentricity of journal induced by maneuvering loads. The effects of forward velocity, radius of curvature, rotating speed, mass unbalance, oil–film clearance, and elastic support stiffness on transient responses of rotor system are discussed during diving–climbing maneuver. The results indicate that when the aircraft performs a diving–climbing maneuver in the vertical plane, the journal deviates from the center of oil–film outer ring, and the excursion direction of whirl orbit is determined by centrifugal acceleration and additional gyroscopic moment. The journal whirls asynchronously around the instantaneous static eccentricity and its magnitude is related to the maneuvering loads and the supporting stiffness. Increasing forward velocity or decreasing pitching radius, the rotor vibration will enter earlier into or withdraw later from the relatively large eccentricity. Rotating near critical speeds or excessive mass unbalances should be prevented during maneuvering flights. For large maneuver, the oil–film radial clearance needs to be enlarged properly to avoid hard contact between journal and outer ring. In addition, the stiffness of elastic support needs to be appropriately determined for damping performance. Overall, it provides a flexible approach with good expandability to predict dynamic characteristics of on-board squeeze-film damped rotor system during maneuvering flights in the design process.


Sign in / Sign up

Export Citation Format

Share Document