Rolling bearing fault diagnosis based on EEMD and sparse decomposition

Author(s):  
Ming Li ◽  
Jimeng Li ◽  
Guoqian Jiang ◽  
Jinfeng Zhang
2013 ◽  
Vol 753-755 ◽  
pp. 2290-2296 ◽  
Author(s):  
Wen Tao Huang ◽  
Yin Feng Liu ◽  
Pei Lu Niu ◽  
Wei Jie Wang

In the early fault diagnosis of rolling bearing, the vibration signal is mixed with a lot of noise, resulting in the difficulties in analysis of early weak fault signal. This article introduces resonance-based signal sparse decomposition (RSSD) into rolling bearing fault diagnosis, and studies the fault information contained in high resonance component and low resonance component. This article compares the effect of the two resonance components to extract rolling bearing fault information in four aspects: the amount of fault information, frequency resolution of subbands, sensitivity to noise and immunity to autocorrelation processing. We find that the high resonance component has greater advantage in extraction of rolling bearing fault information, and it is able to indicate rolling bearing failure accurately.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5541
Author(s):  
Kai Zheng ◽  
Yin Bai ◽  
Jingfeng Xiong ◽  
Feng Tan ◽  
Dewei Yang ◽  
...  

Singular value decomposition (SVD) methods have aroused wide concern to extract the periodic impulses for bearing fault diagnosis. The state-of-the-art SVD methods mainly focus on the low rank property of the Hankel matrix for the fault feature, which cannot achieve satisfied performance when the background noise is strong. Different to the existing low rank-based approaches, we proposed a simultaneously low rank and group sparse decomposition (SLRGSD) method for bearing fault diagnosis. The major contribution is that the simultaneously low rank and group sparse (SLRGS) property of the Hankel matrix for fault feature is first revealed to improve performance of the proposed method. Firstly, we exploit the SLRGS property of the Hankel matrix for the fault feature. On this basis, a regularization model is formulated to construct the new diagnostic framework. Furthermore, the incremental proximal algorithm is adopted to achieve a stationary solution. Finally, the effectiveness of the SLRGSD method for enhancing the fault feature are profoundly validated by the numerical analysis, the artificial bearing fault experiment and the wind turbine bearing fault experiment. Simulation and experimental results indicate that the SLRGSD method can obtain superior results of extracting the incipient fault feature in both performance and visual quality as compared with the state-of-the-art methods.


2021 ◽  
Vol 1792 (1) ◽  
pp. 012035
Author(s):  
Xingtong Zhu ◽  
Zhiling Huang ◽  
Jinfeng Chen ◽  
Junhao Lu

Sign in / Sign up

Export Citation Format

Share Document