Nonlinear dynamics and chaotic behavior of coupled systems with phase and delay control

Author(s):  
V.P. Ponomarenko
1994 ◽  
Vol 04 (03) ◽  
pp. 715-726 ◽  
Author(s):  
MARIA DE SOUSA VIEIRA ◽  
ALLAN J. LICHTENBERG ◽  
MICHAEL A. LIEBERMAN

We investigate numerically and analytically the nonlinear dynamics of a system consisting of two self-synchronizing pulse-coupled nonlinear oscillators with delay. The particular system considered consists of connected digital phase-locked loops. We find mapping equations that govern the system and determine the synchronization properties. We study the bifurcation diagrams, which show regions of periodic, quasiperiodic and chaotic behavior, with unusual bifurcation diagrams, depending on the delay. We show that depending on the parameter that is varied, the delay will have a synchronizing or desynchronizing effect on the locked state. The stability of the system is studied by determining the Liapunov exponents, indicating marked differences compared to coupled systems without delay.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050135
Author(s):  
Alexander A. Burov ◽  
Vasily I. Nikonov

The motion of the pendulum in a variable sawtooth force field is considered. For the “lower” equilibrium, the necessary stability conditions are investigated numerically, the results are presented in the form of an Ince–Strutt diagram. Using the Poincaré–Melnikov method separatrix splitting is studied analytically. Numerically, for some values of parameters, the nonlinear dynamics is studied using Poincaré maps, the regions of regular and chaotic behavior are revealed. The iterative method earlier proposed is used for the localization of periodic solutions, located inside the numerically identified “invariant tori”.


Radiocarbon ◽  
1992 ◽  
Vol 34 (2) ◽  
pp. 207-212 ◽  
Author(s):  
A. V. Blinov ◽  
M. N. Kremliovskij

Variability of solar magnetic activity manifested within sunspot cycles demonstrates features of chaotic behavior. We have analyzed cosmogenic nuclide proxy records for the presence of the solar activity signals. We have applied numerical methods of nonlinear dynamics to the data showing the contribution of the chaotic component. We have also formulated what kind of cosmogenic nuclide data sets are needed for investigations on solar activity.


1996 ◽  
Vol 38 (3-4) ◽  
pp. 141-146
Author(s):  
Yu. V. Shirokov ◽  
L. N. Kazakov

1998 ◽  
Vol 2 ◽  
pp. 43-58
Author(s):  
Bronislovas Kaulakys

Area preserving maps provide the simplest and most accurate means to visualize and quantify the behavior of nonlinear systems. Convenience of the mapping equations of motion for investigation of transition to chaotic behavior in dynamics of classical atom in microwave field, transition to nonchaotic behavior in randomly driven systems and induced quantum dynamics of simple and multilevel systems is demonstrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shun-Chang Chang

This study employed a variety of nonlinear dynamic analysis techniques to explore the complex phenomena associated with a nonlinear mathematical model of an active magnetic bearing (AMB) system. The aim was to develop a method with which to assume control over chaotic behavior. The bifurcation diagram comprehensively explicates rich nonlinear dynamics over a range of parameter values. In this study, we examined the complex nonlinear behaviors of AMB systems using phase portraits, Poincaré maps, and frequency spectra. Furthermore, estimates of the largest Lyapunov exponent based on the properties of synchronization confirmed the occurrence of chatter vibration indicative of chaotic motion. Thus, the proposed continuous feedback control approach based on synchronization characteristics eliminates chaotic oscillations. Finally, some simulation results demonstrated the feasibility and efficiency of the proposed control scheme.


2020 ◽  
Vol 31 (07) ◽  
pp. 2050093
Author(s):  
M. M. Khader ◽  
Mohammed M. Babatin

This paper is devoted to introduce an efficient solver using the Hermite collocation technique (HCT), of the coupled system of fractional differential equations (FDEs). The given systems are of basic importance in modeling various phenomena like Cascades and Compartment Analysis, Pond Pollution, Home Heating, Chemostats, and Microorganism Culturing, Nutrient Flow in an Aquarium, Biomass Transfer, Forecasting Prices, Electrical Network, Earthquake Effects on Buildings. The proposed method reduces the system of FDEs to a system of algebraic equations in the coefficients of the expansion using the Hermite polynomials. The introduced method is computer oriented and provides highly accurate solution. To demonstrate the efficiency of the method, two examples are solved and the results are displayed graphically. Finally, we convert the presented coupled systems from the case of its standard form to a first-order ordinary differential equations to compare the obtained numerical solutions with those solutions using the fourth-order Runge–Kutta method (RK4).


1983 ◽  
Vol 245 (4) ◽  
pp. R484-R494 ◽  
Author(s):  
A. J. Mandell

Nonlinear dynamics offers a language for describing many aspects of brain function. Intermittency, alternating periods of periodic and chaotic behavior, and transitivity, the indecomposability of a flow, are discussed here in detail. Applications are suggested to neuropsychobiological phenomena, such as the effects of drugs and other agents.


Sign in / Sign up

Export Citation Format

Share Document