Estimating the absolute total electron content from the single-frequency GPS/GLONASS data

Author(s):  
A. A. Mylnikova ◽  
Yu. V. Yasyukevich ◽  
V. B. Ivanov ◽  
Anna S. Yasyukevich
2017 ◽  
Vol 3 (1) ◽  
pp. 97-103
Author(s):  
Юрий Ясюкевич ◽  
Yury Yasyukevich ◽  
Анна Мыльникова ◽  
Anna Mylnikova ◽  
Всеволод Иванов ◽  
...  

We present a new technique for estimating the absolute vertical and slant total electron content (TEC). The estimation is based on single-frequency joint phase and pseudorange GPS/GLONASS measurements at single stations. Estimated single-frequency vertical TEC agrees qualitatively and quantitatively with the dual-frequency vertical TEC. For analyzed stations a typical value of the difference between the single-frequency vertical TEC and dual-frequency ones generally does not exceed ~1.5 TECU with RMS up to ~3 TECU.


2017 ◽  
Vol 3 (1) ◽  
pp. 128-137 ◽  
Author(s):  
Юрий Ясюкевич ◽  
Yury Yasyukevich ◽  
Анна Мыльникова ◽  
Anna Mylnikova ◽  
Всеволод Иванов ◽  
...  

We present a new technique for estimating the absolute vertical and slant total electron content (TEC). The estimation is based on single-frequency joint phase and pseudorange GPS/GLONASS measurements at single stations. Estimated single-frequency vertical TEC agrees qualitatively and quantitatively with the dual-frequency vertical TEC. For analyzed stations a typical value of the difference between the single-frequency vertical TEC and dual-frequency ones generally does not exceed ~1.5 TECU with RMS up to ~3 TECU.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1138 ◽  
Author(s):  
Liang Zhang ◽  
Yibin Yao ◽  
Wenjie Peng ◽  
Lulu Shan ◽  
Yulin He ◽  
...  

The prevalence of real-time, low-cost, single-frequency, decimeter-level positioning has increased with the development of global navigation satellite systems (GNSSs). Ionospheric delay accounts for most errors in real-time single-frequency GNSS positioning. To eliminate ionospheric interference in real-time single-frequency precise point positioning (RT-SF-PPP), global ionospheric vertical total electron content (VTEC) product is designed in the next stage of the International GNSS Service (IGS) real-time service (RTS). In this study, real-time generation of a global ionospheric map (GIM) based on IGS RTS is proposed and assessed. There are three crucial steps in the process of generating a real-time global ionospheric map (RTGIM): estimating station differential code bias (DCB) using the precise point positioning (PPP) method, deriving slant total electron content (STEC) from PPP with raw observations, and modeling global vertical total electron content (VTEC). Experiments were carried out to validate the algorithm’s effectiveness. First, one month’s data from 16 globally distributed IGS stations were used to validate the performance of DCB estimation with the PPP method. Second, 30 IGS stations were used to verify the accuracy of static PPP with raw observations. Third, the modeling of residuals was assessed in high and quiet ionospheric activity periods. Afterwards, the quality of RTGIM products was assessed from two aspects: (1) comparison with the Center for Orbit Determination in Europe (CODE) global ionospheric map (GIM) products and (2) determination of the performance of RT-SF-PPP with the RTGIM. Experimental results show that DCB estimation using the PPP method can realize an average accuracy of 0.2 ns; static PPP with raw observations can achieve an accuracy of 0.7, 1.2, and 2.1 cm in the north, east, and up components, respectively. The average standard deviations (STDs) of the model residuals are 2.07 and 2.17 TEC units (TECU) for moderate and high ionospheric activity periods. Moreover, the average root-mean-square (RMS) error of RTGIM products is 2.4 TECU for the one-month moderate ionospheric period. Nevertheless, for the high ionospheric period, the RMS is greater than the RMS in the moderate period. A sub-meter-level horizontal accuracy and meter-level vertical accuracy can be achieved when the RTGIM is employed in RT-SF-PPP.


1988 ◽  
Vol 129 ◽  
pp. 551-552
Author(s):  
G. Petit ◽  
J. F. Lestrade ◽  
C. Boucher ◽  
F. Biraud ◽  
A. Rius ◽  
...  

The GRIG-2 geodetic VLBI experiment was conducted in 1985, linking for the first time South America, Europe and Africa. At the single frequency band of 1.66 GHz which was used, the monitoring of the ionosphere is a critical aspect and several predictions of Total Electron Content (TEC) were used. One of them is derived from dual band Doppler observations of TRANSIT satellites, which were simultaneously conducted. The influence of these models on the solution is presented, with comparisons with other VLBI solutions. Decimetric accuracy has been achieved.


GEOMATICA ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 253-257 ◽  
Author(s):  
Mahmoud Abd El-Rahman ◽  
Ahmed El-Rabbany

Geodetic-grade dual-frequency GPS receivers are typically used for precise point positioning (PPP). Unfortunately, these receiver systems are expensive and may not provide a cost-effective solution in many instances. The use of low-cost single-frequency GPS receivers, on the other hand, are limited by the effect of ionospheric delay. A number of mitigation techniques have been proposed to account for the effect of ionospheric delay for single-frequency GPS users. Unfortunately, however, those mitigation techniques are not suitable for PPP. More recently, the U.S. Total Electron Content (USTEC) product has been developed by the National Oceanic and Atmospheric Administration (NOAA), which describes the ionospheric total electron content in high resolution over most of North America. This paper investigates the performance of USTEC and studies its effect on single-frequency PPP solution. A performance comparison with two widely-used ionospheric mitigation models is also presented.


2020 ◽  
Vol 12 (20) ◽  
pp. 3354
Author(s):  
Yang Wang ◽  
Yibin Yao ◽  
Liang Zhang ◽  
Mingshan Fang

Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total electron content (VTEC) products. However, the accuracy distribution of VTEC products is nonuniform. Proposing a refinement method is a convenient means to obtain a more accuracy and consistent VTEC product. In this study, we proposed a refinement method of a real-time ionospheric VTEC model for China and carried out experiments to validate the model effectiveness. First, based on the refinement method and the Centre National d’Études Spatiales (CNES) VTEC products, three refined real-time global ionospheric models (RRTGIMs) with one, three, and six stations in China were built via GNSS observations. Second, the slant total electron content (STEC) and Jason-3 VTEC were used as references to evaluate VTEC accuracy. Third, RT-SF-PPP was used to evaluate the accuracy in the positioning domain. Results showed that even if using only one station to refine the global ionospheric model, the refined model achieved a better performance than CNES and the Center for Orbit Determination in Europe (CODE). The refinement model with six stations was found to be the best of the three refinement models.


Sign in / Sign up

Export Citation Format

Share Document