scholarly journals Estimating the absolute total electron content based on single-frequency satellite radio navigation GPS/GLONASS data

2017 ◽  
Vol 3 (1) ◽  
pp. 128-137 ◽  
Author(s):  
Юрий Ясюкевич ◽  
Yury Yasyukevich ◽  
Анна Мыльникова ◽  
Anna Mylnikova ◽  
Всеволод Иванов ◽  
...  

We present a new technique for estimating the absolute vertical and slant total electron content (TEC). The estimation is based on single-frequency joint phase and pseudorange GPS/GLONASS measurements at single stations. Estimated single-frequency vertical TEC agrees qualitatively and quantitatively with the dual-frequency vertical TEC. For analyzed stations a typical value of the difference between the single-frequency vertical TEC and dual-frequency ones generally does not exceed ~1.5 TECU with RMS up to ~3 TECU.

2017 ◽  
Vol 3 (1) ◽  
pp. 97-103
Author(s):  
Юрий Ясюкевич ◽  
Yury Yasyukevich ◽  
Анна Мыльникова ◽  
Anna Mylnikova ◽  
Всеволод Иванов ◽  
...  

We present a new technique for estimating the absolute vertical and slant total electron content (TEC). The estimation is based on single-frequency joint phase and pseudorange GPS/GLONASS measurements at single stations. Estimated single-frequency vertical TEC agrees qualitatively and quantitatively with the dual-frequency vertical TEC. For analyzed stations a typical value of the difference between the single-frequency vertical TEC and dual-frequency ones generally does not exceed ~1.5 TECU with RMS up to ~3 TECU.


GEOMATICA ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 253-257 ◽  
Author(s):  
Mahmoud Abd El-Rahman ◽  
Ahmed El-Rabbany

Geodetic-grade dual-frequency GPS receivers are typically used for precise point positioning (PPP). Unfortunately, these receiver systems are expensive and may not provide a cost-effective solution in many instances. The use of low-cost single-frequency GPS receivers, on the other hand, are limited by the effect of ionospheric delay. A number of mitigation techniques have been proposed to account for the effect of ionospheric delay for single-frequency GPS users. Unfortunately, however, those mitigation techniques are not suitable for PPP. More recently, the U.S. Total Electron Content (USTEC) product has been developed by the National Oceanic and Atmospheric Administration (NOAA), which describes the ionospheric total electron content in high resolution over most of North America. This paper investigates the performance of USTEC and studies its effect on single-frequency PPP solution. A performance comparison with two widely-used ionospheric mitigation models is also presented.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Omid Memarian Sorkhabi

AbstractOne of the most notable errors in the global navigation satellite system (GNSS) is the ionospheric delay due to the total electron content (TEC). TEC is the number of electrons in the ionosphere in the signal path from the satellite to the receiver, which fluctuates with time and location. This error is one of the major problems in single-frequency (SF) GPS receivers. One way to eliminate this error is to use dual-frequency. Users of SF receivers should either use estimation models or local models to reduce this error. In this study, deep learning of artificial neural networks (ANN) was used to estimate TEC for SF users. For this purpose, the ionosphere as a single-layer model (assuming that all free electrons in the ionosphere are in this thin layer) is locally modeled by the code observation method. Linear combination has been used by selecting 24 permanent GNSS stations in the northwest of Iran. TEC was modeled independently of the geometry between the satellite and the receiver, called L4. This modeling was used to train the error ANN with two 5-day periods of high and low solar and geomagnetic activity range with a hyperbolic tangential sigmoid activation function. The results show that the proposed method is capable of eliminating ionosphere error with an average accuracy of 90%. The international reference ionosphere 2016 (IRI2016) is used for the verification, which has a 96% significance correlation with estimated TEC.


2021 ◽  
Vol 13 (19) ◽  
pp. 3973
Author(s):  
Artem M. Padokhin ◽  
Anna A. Mylnikova ◽  
Yury V. Yasyukevich ◽  
Yury V. Morozov ◽  
Gregory A. Kurbatov ◽  
...  

Global navigation satellite system signals are known to be an efficient tool to monitor the Earth ionosphere. We suggest Galileo E5 AltBOC phase and pseudorange observables— a single-frequency combination—to estimate the ionospheric total electron content (TEC). We performed a one-month campaign in September 2020 to compare the noise level for different TEC estimations based on single-frequency and dual-frequency data. Unlike GPS, GLONASS, or Galileo E5a and E5b single-frequency TEC estimations (involving signals with binary and quadrature phase-shift keying, such as BPSK and QPSK, or binary offset carrier (BOC) modulation), an extra wideband Galileo E5 AltBOC signal provided the smallest noise level, comparable to that of dual-frequency GPS. For elevation higher than 60 degrees, the 100-sec root-mean-square (RMS) of TEC, an estimated TEC noise proxy, was as follows for different signals: ~0.05 TECU for Galileo E5 AltBOC, 0.09 TECU for GPS L5, ~0.1TECU for Galileo E5a/E5b BPSK, and 0.85 TECU for Galileo E1 CBOC. Dual-frequency phase combinations provided RMS values of 0.03 TECU for Galileo E1/E5, 0.03 and 0.07 TECU for GPS L1/L2 and L1/L5. At low elevations, E5 AltBOC provided at least twice less single-frequency TEC noise as compared with data obtained from E5a or E5b. The short dataset of our study could limit the obtained estimates; however, we expect that the AltBOC single-frequency TEC will still surpass the BPSK analogue in noise parameters when the solar cycle evolves and geomagnetic activity increases. Therefore, AltBOC signals could advance geoscience.


Author(s):  
Laksamana Agung Aprillo ◽  
Hendy Santosa ◽  
Faisal Hadi

ABSTRACT Bengkulu is one of 34 provinces in Indonesia which is a megathrust region. So Bengkulu province is often hit by many large earthquakes with shallow depth. TEC anomaly was analyzed based on three electromagnetic waves radiated by an earthquake. The total electron content (TEC) anomaly is seen through the global positioning system (GPS) dual-frequency radio signal data. The continuous wavelet transform (CWT) method is used to divide the signal analysis into several sections according to the electromagnetic wave frequency range of acoustic (2.5 mHz) -3 mHz), gravity waves (1 mHz-2.8 mHz) and rayleigh waves (5 mHz-33 mHz). GPS observation data for 9 days is calculated using the Standard deviation (2?) method to see trends in data changes. The analysis shows anomalies in the September 12 2007 earthquake (7.9 Mw), the March 5 2010 earthquake (6.3 Mw) and the August 4 2011 earthquake (6.0 Mw). Anomalies are detected 1 to 5 hours before an earthquake occurs. TEC anomalies that occur may be related to the process of preseismic before the earthquake and may be an early sign of an earthquake.Keyword: earthquake, total electron content, continous wavelet transform, standard deviation


Sign in / Sign up

Export Citation Format

Share Document