Spectral Efficiency of Closed-Loop Transmit Diversity with Limited Feedback for UTRA Long Term Evolution

Author(s):  
Na Wei ◽  
Batool Talha ◽  
Troels Sorensen ◽  
Troels Kolding ◽  
Preben Mogensen
2015 ◽  
Author(s):  
◽  
Israel Oludayo Elujide

This dissertation reports on handover in downlink Long Term Evolution (LTE) networks. The LTE is seen as the technology that will bring about Fourth Generation (4G) mobile broadband experience. The necessity to maintain quality of service for delay sensitive data services and applications used by mobile users makes mobility and handover between base stations in the downlink LTE very critical. Unfortunately, several handover schemes in LTE are based on Reference Symbols Received Power (RSRP) which include measurement error due to limited symbols in downlink packets. However, prompt and precise handover decision cannot be based on inaccurate measurement. Therefore, the downlink LTE intra-system handover is studied with focus on user measurement report. The study centers on preparation stage of the LTE handover procedure. Two different types of physical layer filtering technique namely linear averaging and local averaging are focused upon among others investigated. The performance of LTE conventional physical layer filtering technique, linear filtering, is compared with an alternative technique called local averaging. The output of each physical layer filtering is then used for LTE standardized radio resource layer filtering (otherwise called L3 filtering). The analysis of results from handover decision is based on simulations performed in an LTE system-level simulator. The performance metrics for the results are evaluated in terms of overall system and mobility-related performance. The system performance is based on spectral efficiency and throughput while mobility-related performance is based on handover failure. The performance comparison of the results shows that local averaging technique provides improved system performance of about 51.2 % for spectral efficiency and 42.8% cell-edge throughput for high speed users. Local averaging also produces a reduction of about 26.95% in average number of handover failure when L 3 filtering is applied for low speed mobile terminal. This result confirms that both averaging techniques are suitable for LTE network. Moreover, in the case of high mobility local averaging tends to be better than linear averaging.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


2013 ◽  
Vol 8 (15) ◽  
pp. 33-40
Author(s):  
Javier Enrique Arévalo Peña

En la planeación de las próximas generaciones de redes inalámbricas es importante contar con estudios de radio propagación que permitan establecer diseños adecuados para ofrecer los servicios proyectados por las nuevas tecnologías a los usuarios móviles. En este artículo se presentan aspectos relacionados con el comportamiento de cobertura de radio propagación del modelo propuesto por el 3GPP (3rd Generation Partnership Project) para un entorno urbano en una red LTE (Long Term Evolution) empleando sistemas de antenas convencionales y sistemas de antena adaptativas (AAS). Para ello se utiliza la herramienta de software ICS Designer y se establece como escenario los alrededores la Fundación Universidad Autónoma de Colombia ubicada en el centro urbano de la ciudad de Bogotá D. C.


Sign in / Sign up

Export Citation Format

Share Document