Toward charging free plasma processes: phase space modeling between pulsed plasma and microtrench

Author(s):  
T. Makabe ◽  
J. Matsui ◽  
M. Shibata ◽  
N. Nakano
2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Giovanni Manfredi ◽  
Paul-Antoine Hervieux ◽  
Jérôme Hurst

1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1976 ◽  
Vol 35 (01) ◽  
pp. 178-185 ◽  
Author(s):  
Helena Sandberg ◽  
Lars-Olov Andersson

SummaryHuman plasma lipoprotein fractions were prepared by flotation in the ultracentrifuge. Addition of these fractions to platelet-rich, platelet-poor and platelet-free plasma affected the partial thromboplastin and Stypven clotting times to various degrees. Addition of high density lipoprotein (HDL) to platelet-poor and platelet-free plasma shortened both the partial thromboplastin and the Stypven time, whereas addition of low density lipoprotein and very low density lipoprotein (LDL + VLDL) fractions only shortened the Stypven time. The additions had little or no effect in platelet-rich plasma.Experiments involving the addition of anti-HDL antibodies to plasmas with different platelet contents and measuring of clotting times produced results that were in good agreement with those noted when lipoprotein was added. The relation between structure and the clot-promoting activity of various phospholipid components is discussed.


1981 ◽  
Vol 46 (03) ◽  
pp. 645-647 ◽  
Author(s):  
M A Orchard ◽  
C Robinson

SummaryThe biological half-life of prostacyclin in Krebs solution, human cell-free plasma or whole blood was measured by bracket assay on ADP-induced platelet aggregation. At 37°C, pH 7.4, plasma and blood reduced the rate of loss of antiaggregatory activity compared with Krebs solution. The protective effect of plasma was greater than that of whole blood. This effect could be partially mimicked by the addition of human or bovine serum albumin to the Krebs solution. The stabilisation afforded by human serum albumin was dependent on the fatty acid content of the albumin, although this was less important for bovine serum albumin.


1958 ◽  
Vol 02 (01/02) ◽  
pp. 111-124 ◽  
Author(s):  
E Deutsch ◽  
K Martiny

Summary1. Normal platelets are necessary for induction of normal clot retraction.2. Serotonin does not induce retraction in human platelet-free plasma-clots or enhance clot firmness as measured in the coagulogram.3. Serotonin does not improve clot retraction or firmness in plasma clots with sub-optimal platelet counts.4. Methylserotonin inhibits clot retraction of platelet-rich plasma to a certain extent in moderate doses, whereas, high doses are ineffective. BOL 148 has a similar, but less significant action. There is a possibility that these effects are specific antiserotonin-effects.5. LSD 25 was ineffective in all concentrations used.6. Largactil and reserpin inhibit retraction in high doses. There seems to be a non specific effect caused by the high dose.7. Reserpine does not release a retraction-inducing agent from the platelets, which could be detected in the centrifuged platelet-free plasma used for the incubation.8. Serotonin does not replace the retraction-cofactor of Hartert, or the dialyzable factor of Lüscher in synthetic clotting substrates.9. Serotonin is of no essential value in inducing normal retraction of human plasma clots.


Sign in / Sign up

Export Citation Format

Share Document