Magnetic field calculations and management of Kuwait HVTLs using the vector magnetic potential concept

Author(s):  
H.M. Ismail
Author(s):  
Jasim Mohmed Jasim Jasim ◽  
Iryna Shvedchykova ◽  
Igor Panasiuk ◽  
Julia Romanchenko ◽  
Inna Melkonova

An approach is proposed to carry out multivariate calculations of the magnetic field distribution in the working gaps of a plate polygradient matrix of an electromagnetic separator, based on a combination of the advantages of two- and three-dimensional computer modeling. Two-dimensional geometric models of computational domains are developed, which differ in the geometric dimensions of the plate matrix elements and working air gaps. To determine the vector magnetic potential at the boundaries of two-dimensional computational domains, a computational 3D experiment is carried out. For this, three variants of the electromagnetic separator are selected, which differ in the size of the working air gaps of the polygradient matrices. For them, three-dimensional computer models are built, the spatial distribution of the magnetic field in the working intervals of the electromagnetic separator matrix and the obtained numerical values of the vector magnetic potential at the boundaries of the computational domains are investigated. The determination of the values of the vector magnetic potential for all other models is carried out by interpolation. The obtained values of the vector magnetic potential are used to set the boundary conditions in a computational 2D experiment. An approach to the choice of a rational version of a lamellar matrix is substantiated, which provides a solution to the problem according to the criterion of the effective area of the working area. Using the method of simple enumeration, a variant of the structure of a polygradient matrix with rational geometric parameters is selected. The productivity of the electromagnetic separator with rational geometric parameters of the matrix increased by 3–5 % with the same efficiency of extraction of ferromagnetic inclusions in comparison with the basic version of the device


Symmetry ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1163 ◽  
Author(s):  
John Stewart Fabila-Carrasco ◽  
Fernando Lledó

In this article, we analyze the spectrum of discrete magnetic Laplacians (DML) on an infinite covering graph G ˜ → G = G ˜ / Γ with (Abelian) lattice group Γ and periodic magnetic potential β ˜ . We give sufficient conditions for the existence of spectral gaps in the spectrum of the DML and study how these depend on β ˜ . The magnetic potential can be interpreted as a control parameter for the spectral bands and gaps. We apply these results to describe the spectral band/gap structure of polymers (polyacetylene) and nanoribbons in the presence of a constant magnetic field.


2012 ◽  
Vol 02 (04) ◽  
pp. 202-207
Author(s):  
Ivan Rampl ◽  
Lukáš Palko ◽  
Pavel Hyršl ◽  
Libor Vojtek

2020 ◽  
Vol 54 (4) ◽  
pp. 1073-1109
Author(s):  
Stéphane Balac ◽  
Laurent Chupin ◽  
Sébastien Martin

In Magnetic Resonance Imaging there are several situations where, for simulation purposes, one wants to compute the magnetic field induced by a cluster of small metallic particles. Given the difficulty of the problem from a numerical point of view, the simplifying assumption that the field due to each particle interacts only with the main magnetic field but does not interact with the fields due to the other particles is usually made. In this paper we investigate from a mathematical point of view the relevancy of this assumption and provide error estimates for the scalar magnetic potential in terms of the key parameter that is the minimal distance between the particles. A special attention is paid to obtain explicit and relevant constants in the estimates. When the “non-interacting assumption” is deficient, we propose to compute a better approximation of the magnetic potential by taking into account pairwise magnetic field interactions between particles that enters in a general framework for computing the scalar magnetic potential as a series expansion.


Author(s):  
Manuel Aurelio Rodriguez ◽  
Paris von Lockette

Magneto-Active elastomers (MAEs) and magneto-rheological elastomers (MREs) are smart materials that consist of hard and soft magnetic particles, respectively, embedded in a flexible matrix. Their actuation capabilities are dependent on the arrangement of particles achieved during the fabrication process. Previous works have shown varying degrees of particle alignment and / or agglomeration as a function of fabrication process variable, most notably volume fraction of the particulates, their magnetic material type (hard vs soft), and the strength of the external field applied during curing. In this work, we simulated the dynamics of magnetic particles suspended in a fluid matrix to predict the evolution of microstructures resulting from these varying process conditions. The simulations accounted for the magnetic interaction of all particles using standard dipole-dipole interaction potentials along with dipole-field potentials developed from the Zeeman Energy. Additionally, the field local to each particle, on which magnetization depends, was determined by the sum of the external fields generated by each member of the ensemble and their demagnetizing fields. Fluid drag forces and short range particle-particle repulsion (non-overlapping) were also considered. These interactions determined the body forces and torques acting on each particle that drove the system of equations of motions for the ensemble of particles. The simulation was carried out over a nearest neighbor periodic unit cell using an adaptive time stepping numerical integration scheme until an equilibrium structure was reached. Structural parameters, related to the magnetic energy, spatial distribution, spatial alignment, and orientation alignments of the particle distributions were defined to characterize the simulated structures. The effect of volume fraction and intensity of the external magnetic field on the achieved particle distributions were studied. At low external field strengths, the particles formed long entangled chains that had very low alignment with the applied field. The remnant magnetic potential energy of these configurations was also significantly low. As the field is increased the length of the chains reduced and the alignment increased. The corresponding change in magnetic potential energy of the system with an increase in the applied field was found to follow a power law fit that spanned a wide range of magnetic field strengths. At low volume fractions the particles aligned rapidly with the field and formed short chains. As the volume fraction of the samples increased the chains grew longer and closer to each other, and magnetic potential of the structure became lower. Results of the simulations suggest that it is possible to tailor the microstructure and thus affect remanent magnetization and magnetization anisotropy, by judicious control of process parameters. This ability could have implications for newly emerging additive manufacturing techniques utilizing suspensions of magnetic particulates.


2011 ◽  
Vol 676 ◽  
pp. 218-236 ◽  
Author(s):  
JĀNIS PRIEDE

This paper considers the stability of liquid metal drops subject to a high-frequency AC magnetic field. An energy variation principle is derived in terms of the surface integral of the scalar magnetic potential. This principle is applied to a thin perfectly conducting liquid disk, which is used to model the drops constrained in a horizontal gap between two parallel insulating plates. Firstly, the stability of a circular disk is analysed with respect to small-amplitude harmonic edge perturbations. Analytical solution shows that the edge deformations with the azimuthal wavenumbers m = 2, 3, 4, . . . start to develop as the magnetic Bond number exceeds the critical threshold Bmc = 3π(m + 1)/2. The most unstable is m = 2 mode, which corresponds to an elliptical deformation. Secondly, strongly deformed equilibrium shapes are modelled numerically by minimising the associated energy in combination with the solution of a surface integral equation for the scalar magnetic potential on an unstructured triangular mesh. The edge instability is found to result in the equilibrium shapes of either two- or threefold rotational symmetry depending on the magnetic field strength and the initial perturbation. The shapes of higher rotational symmetries are unstable and fall back to one of these two basic states. The developed method is both efficient and accurate enough for modelling of strongly deformed drop shapes.


Sign in / Sign up

Export Citation Format

Share Document