Fundamental parameter measurements of high efficiency single crystal silicon concentrator cells

1988 ◽  
Author(s):  
S.P. Shea ◽  
J.H. Wohlgemuth ◽  
J.R. Silver
2009 ◽  
Vol 1153 ◽  
Author(s):  
Katherine L. Saenger ◽  
Joel P. de Souza ◽  
Daniel Inns ◽  
Keith E. Fogel ◽  
Devendra K. Sadana

AbstractDemand for high efficiency, low-cost solar cells has led to strong interest in post-deposition processing techniques that can improve the crystallinity of thick (1 to 40 μm) silicon films deposited at high growth rates. Here we describe a high temperature grain reorientation annealing process that enables the conversion of polycrystalline silicon (poly-Si) into a single crystal material having the orientation of an underlying single crystal Si seed layer. Poly-Si films of thickness 0.5 to 1.0 μm were deposited by low pressure chemical vapor deposition (LPCVD) on substrates comprising a surface thermal oxide or a 100-oriented single crystal silicon-on-insulator (SOI) layer. After annealing at 1300 °C for 1 hour, poly-Si on oxide shows very significant grain growth, as expected. In contrast, the poly-Si deposited on SOI showed no grain boundaries after annealing, transforming into a single crystal material with a fairly high density of stacking faults. Possible uses and drawbacks of this approach for solar cell applications will be discussed.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document