Comparison of experimental data with AMPS modeling of the effects of CdS layer thickness on the CdS/CdTe solar cell

Author(s):  
A. Fahrenbruch
Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3275
Author(s):  
Devendra KC ◽  
Deb Kumar Shah ◽  
M. Shaheer Akhtar ◽  
Mira Park ◽  
Chong Yeal Kim ◽  
...  

This paper numerically explores the possibility of ultrathin layering and high efficiency of graphene as a back surface field (BSF) based on a CdTe solar cell by Personal computer one-dimensional (PC1D) simulation. CdTe solar cells have been characterized and studied by varying the carrier lifetime, doping concentration, thickness, and bandgap of the graphene layer. With simulation results, the highest short-circuit current (Isc = 2.09 A), power conversion efficiency (h = 15%), and quantum efficiency (QE ~ 85%) were achieved at a carrier lifetime of 1 × 103 ms and a doping concentration of 1 × 1017 cm−3 of graphene as a BSF layer-based CdTe solar cell. The thickness of the graphene BSF layer (1 mm) was proven the ultrathin, optimal, and obtainable for the fabrication of high-performance CdTe solar cells, confirming the suitability of graphene material as a BSF. This simulation confirmed that a CdTe solar cell with the proposed graphene as the BSF layer might be highly efficient with optimized parameters for fabrication.


2019 ◽  
Vol 87 (3) ◽  
pp. 30101 ◽  
Author(s):  
Abdel-baset H. Mekky

Semiconductor materials cadmium sulfide (CdS) and cadmium telluride (CdTe) are employed in the fabrication of thin film solar cells of relatively excessive power conversion efficiency and low producing price. Simulations of thin film CdS/CdTe solar cell were carried out using SCAPS-1D. The influence of temperature field on the variation of CdTe solar cell parameters such as current–voltage, capacitance–voltage characteristics and the external quantum efficiency was investigated theoretically. For use temperatures, one obtains the external quantum efficiency has the same profiles. However, the effect of the temperature on the Mott-Schottky curves is slightly noted by variations on the characteristics. This conclusion can be used by solar cell manufacturers to improve the solar cell parameters with the biggest possible gain in device performance.


2021 ◽  
Vol 151 ◽  
pp. 106830
Author(s):  
Shamim Ahmmed ◽  
Asma Aktar ◽  
Samia Tabassum ◽  
Md. Hafijur Rahman ◽  
Md. Ferdous Rahman ◽  
...  
Keyword(s):  

2009 ◽  
Vol 43 (8) ◽  
pp. 1023-1027 ◽  
Author(s):  
L. A. Kosyachenko ◽  
A. I. Savchuk ◽  
E. V. Grushko
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Çağlar Çetinkaya ◽  
Erman Çokduygulular ◽  
Barış Kınacı ◽  
Feyza Güzelçimen ◽  
Yunus Özen ◽  
...  

AbstractWe conducted the present study to design and manufacture a semi-transparent organic solar cell (ST-OSC). First, we formed a transparent top contact as MoO3/Ag/MoO3 in a dielectric/metal/dielectric (DMD) structure. We performed the production of an FTO/ZnO/P3HT:PCBM/MoO3/Ag/MoO3 ST-OSC by integrating MoO3/Ag/MoO3 (10/$$d_{m}$$ d m /$$d_{{od}}$$ d od nm) instead of an Ag electrode in an opaque FTO/ZnO/P3HT:PCBM/MoO3/Ag (–/40/130/10/100 nm) OSC, after theoretically achieving optimal values of optical and electrical parameters depending on Ag layer thickness. The transparency decreased with the increase of $$d_{m}$$ d m values for current DMD. Meanwhile, maximum transmittance and average visible transmittance (AVT) indicated the maximum values of over 92% for $$d_{m} ~$$ d m  = 4 and 8 nm, respectively. For ST-OSCs, the absorption and reflectance increased in the visible region by a wavelength of longer than 560 nm and in the whole near-infrared region by increasing $$d_{m}$$ d m up to 16 nm. Moreover, in the CIE chromaticity diagram, we reported a shift towards the D65 Planckian locus for colour coordinates of current ST-OSCs. Electrical analysis indicated the photogenerated current density and AVT values for $$d_{m} = 6$$ d m = 6  nm as 63.30 mA/cm2 and 38.52%, respectively. Thus, the theoretical and experimental comparison of optical and electrical characteristics confirmed that the manufactured structure is potentially conducive for a high-performance ST-OSC.


1969 ◽  
Vol 59 (1) ◽  
pp. 399-407
Author(s):  
Robert B. Herrmann

Abstract The propagation of Rayleigh waves with periods of 0.4 to 2.0 seconds across the Cincinnati arch is investigated. The region of investigation includes southern Indiana and Ohio and northern Kentucky. The experimental data for all paths are fitted by a three-layer model of varying layer thickness but of fixed velocity in each layer. The resulting inferred structural picture is in good agreement with the known basement trends of the region. The velocities of the best fitting theoretical model agree well with velocity-depth data from a well in southern Indiana.


Sign in / Sign up

Export Citation Format

Share Document