Analysis and Estimation of Video QoE in Wireless Cellular Networks using Machine Learning

Author(s):  
Dimitar Minovski ◽  
Christer Ahlund ◽  
Karan Mitra ◽  
Per Johansson
Author(s):  
Paulo Valente Klaine ◽  
Oluwakayode Onireti ◽  
Richard Demo Souza ◽  
Muhammad Ali Imran

In this chapter, a brief overview of the role and applications of machine learning (ML) algorithms in future wireless cellular networks is presented, more specifically, in the context of self-organizing networks (SONs). SON is a promising and innovative concept, in which future networks are expected to analyze and use historical data in order to improve and adapt themselves to the network conditions. For this to be possible, however, algorithms that are capable of extracting patterns from data and learn from previous actions are necessary. This chapter highlights the utilization and possible applications of ML algorithms in future cellular networks. A brief introduction of ML and SON is presented, followed by an analysis of current state of the art solutions involving ML in SON. Lastly, guidelines on the utilization of intelligent algorithms in SON and future research trends in the area are highlighted and conclusions are drawn.


2007 ◽  
Author(s):  
Mung Chiang ◽  
Prashanth Hande ◽  
Tian Lan ◽  
Chee Wei Tan

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4618
Author(s):  
Francisco Oliveira ◽  
Miguel Luís ◽  
Susana Sargento

Unmanned Aerial Vehicle (UAV) networks are an emerging technology, useful not only for the military, but also for public and civil purposes. Their versatility provides advantages in situations where an existing network cannot support all requirements of its users, either because of an exceptionally big number of users, or because of the failure of one or more ground base stations. Networks of UAVs can reinforce these cellular networks where needed, redirecting the traffic to available ground stations. Using machine learning algorithms to predict overloaded traffic areas, we propose a UAV positioning algorithm responsible for determining suitable positions for the UAVs, with the objective of a more balanced redistribution of traffic, to avoid saturated base stations and decrease the number of users without a connection. The tests performed with real data of user connections through base stations show that, in less restrictive network conditions, the algorithm to dynamically place the UAVs performs significantly better than in more restrictive conditions, reducing significantly the number of users without a connection. We also conclude that the accuracy of the prediction is a very important factor, not only in the reduction of users without a connection, but also on the number of UAVs deployed.


Sign in / Sign up

Export Citation Format

Share Document