A novel RF emitter localization method through phase information

Author(s):  
Charles A. Berdanier ◽  
Zhiqiang Wu
2022 ◽  
Vol 20 (4) ◽  
pp. 537-544
Author(s):  
William De Carvalho Rodrigues ◽  
Jose Antonio Apolinario

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 875 ◽  
Author(s):  
Xiaochao Dang ◽  
Xiong Si ◽  
Zhanjun Hao ◽  
Yaning Huang

With the rapid development of wireless network technology, wireless passive indoor localization has become an increasingly important technique that is widely used in indoor location-based services. Channel state information (CSI) can provide more detailed and specific subcarrier information, which has gained the attention of researchers and has become an emphasis in indoor localization technology. However, existing research has generally adopted amplitude information for eigenvalue calculations. There are few research studies that have used phase information from CSI signals for localization purposes. To eliminate the signal interference existing in indoor environments, we present a passive human indoor localization method named FapFi, which fuses CSI amplitude and phase information to fully utilize richer signal characteristics to find location. In the offline stage, we filter out redundant values and outliers in the CSI amplitude information and then process the CSI phase information. A fusion method is utilized to store the processed amplitude and phase information as a fingerprint database. The experimental data from two typical laboratory and conference room environments were gathered and analyzed. The extensive experimental results demonstrate that the proposed algorithm is more efficient than other algorithms in data processing and achieves decimeter-level localization accuracy.


2021 ◽  
Author(s):  
Md Abdullah Al Imran ◽  
Eray Arik ◽  
Yaser Dalveren ◽  
Mehmet Baris Tabakcioglu ◽  
Ali Kara

Abstract This study aims to evaluate the accuracy of a method proposed for passive localization of radar emitters around irregular terrains with a single receiver in Electronic Support Measures (ESM) systems. Previously, only the theoretical development of the localization method was targeted by the authors. In fact, this could be a serious concern in practice since there is no evidence about its accuracy under the real data gathered from realistic scenarios. Therefore, firstly, an accurate ray-tracing algorithm is adapted to the method in order to enable its implementation in practice. Then, scenarios are determined based on the geographic information system (GIS) map generated to collect high resolution digital terrain elevation data (DTED) as well as realistic localization problems for radar emitters. Next, the improved method is tested with simulations, and thus, its performance is verified for practical implementation in Electronic Warfare (EW) context for the first time in the literature. Lastly, based on the simulation results, the performance bounds of the method are also discussed.


Author(s):  
A. K. Datye ◽  
D. S. Kalakkad ◽  
L. F. Allard ◽  
E. Völkl

The active phase in heterogeneous catalysts consists of nanometer-sized metal or oxide particles dispersed within the tortuous pore structure of a high surface area matrix. Such catalysts are extensively used for controlling emissions from automobile exhausts or in industrial processes such as the refining of crude oil to produce gasoline. The morphology of these nano-particles is of great interest to catalytic chemists since it affects the activity and selectivity for a class of reactions known as structure-sensitive reactions. In this paper, we describe some of the challenges in the study of heterogeneous catalysts, and provide examples of how electron holography can help in extracting details of particle structure and morphology on an atomic scale.Conventional high-resolution TEM imaging methods permit the image intensity to be recorded, but the phase information in the complex image wave is lost. However, it is the phase information which is sensitive at the atomic scale to changes in specimen thickness and composition, and thus analysis of the phase image can yield important information on morphological details at the nanometer level.


2014 ◽  
Author(s):  
Susan Carrigan ◽  
Evan Palmer ◽  
Philip J. Kellman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document