A Robust Stackelberg Game-Based Power Allocation Scheme for Spectral Coexisting Multistatic Radar and Communication Systems

Author(s):  
Chenguang Shi ◽  
Fei Wang ◽  
Sana Salous ◽  
Jianjiang Zhou
2021 ◽  
Author(s):  
Kandasamy Illanko

Designing wireless communication systems that efficiently utilize the resources frequency spectrum and electric power, leads to problems in mathematical optimization. Most of these optimization problems are difficult to solve because the objective functions are nonconvex. While some problems remain unsolved, the solutions proposed in the literature for the others are of somewhat limited use because the algorithms are either unstable or have too high a computational complexity. This dissertation presents several stable algorithms, most of which have polynomial complexity, that solve five different nonconvex optimization problems in wireless communication. Two centralized and two distributed algorithms deal with the power allocation that maximizes the throughput in the Gaussian interference channel (GIC)with various constraints. The most valuable of these algorithms, the one with the minimum rate constraints became possible after a significant theoretical development in the dissertation that proves that the throughput of the GIC has a new generalized convex structure called invexity. The fifth algorithm has linear complexity, and finds the power allocation that maximizes the energy efficiency (EE) of OFDMA transmissions, for a given subchannel assignment. Some fundamental results regarding the power allocation are then used in the genetic algorithm for determining the subchannel allocation that maximizes the EE. Pricing for channel subleasing for ad-hoc wireless networks is considered next. This involves the simultaneous optimization of many functions that are interconnected through the variables involved. A composite game, a strategic game within a Stackelberg game, is used to solve this optimization problem with polynomial complexity. For each optimization problem solved, numerical results obtained using simulations that support the analysis and demonstrate the performance of the algorithms are presented.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 58
Author(s):  
Erqing Zhang ◽  
Sixing Yin ◽  
Huisheng Ma

Ultra-reliable low-latency communication (URLLC) is one of the three usage scenarios anticipated for 5G, which plays an important role in advanced applications of vehicle-to-everything (V2X) communications. In this paper, the Stackelberg game-based power allocation problem was investigated in V2X communications underlaying cellular networks. Assuming that the macro-cellular base station (MBS) sets the interference prices to protect itself from the V2X users (VUEs), the Stackelberg game was adopted to analyze the interaction between MBS and VUEs, where the former acts as a leader and the latter act as followers. For MBS, we aimed at maximizing its utility from interference revenue while considering the cost of interference. Meanwhile, the VUEs aimed at maximizing their utilities per unit power consumption. We analyzed the Stackelberg model and obtained the optimal prices for MBS and optimal transmit powers for VUEs. Simulation results demonstrated the superiority of the proposed Stackelberg game-based power allocation scheme in comparison with the traditional power allocation strategy. Meanwhile, the proposed scheme achieved a better trade-off between economic profit and power consumption.


2018 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Yu Zuo ◽  
Jian Zhang

Visible light communications (VLCs) utilizing multi-color light-emitting diodes (LEDs) can achieve a high modulation bandwidth and high-quality illumination compared with phosphor-converted LEDs, which have attracted much attention. However, the spectrum overlapping of different colors may cause the crosstalk problem, which should be considered in the practical multi-color LED-based VLC systems. Due to the ever-increasing energy consumption, the interest in an energy-saving communication technique has further increased. In this paper, in order to maximize energy efficiency, an optimization problem of the optical power allocation scheme is formulated for the multi-color LED-based VLC systems under the necessary communication requirements and illumination constraints with luminance, chromaticity, and signal to interference plus noise ratio (SINR) constraints. Simulation results indicate that the proposed optimal power allocation scheme can reduce energy consumption while satisfying the illumination and communication requirements.


Sign in / Sign up

Export Citation Format

Share Document