Investigation of Effective Intensity of Static Stretching Exercise Based on Spring-Pot Viscoelastic Model: Intensity Based on Maximum Tolerance Joint Torque Affects Viscoelastic Ratio of Muscle During Static Stretching

Author(s):  
Naomi Okamura ◽  
Ritaro Kasai ◽  
Yo Kobayahsi ◽  
Shigeki Sugano ◽  
Masakatsu G. Fujie
Author(s):  
Claudio Antunes Junior ◽  
Emílio Mercuri ◽  
Ana Paula Gebert de Oliveira Franco ◽  
Leandro Zen Karam
Keyword(s):  

2013 ◽  
Vol 1 (1) ◽  
pp. 42-25
Author(s):  
Nabil N. Swadi

This paper is concerned with the study of the kinematic and kinetic analysis of a slider crank linkage using D'Alembert's principle. The links of the considered mechanism are assumed to be rigid. The analytical solution to observe the motion (displacement, velocity, and acceleration), reactions at each joint, torque required to drive the mechanism and the shaking force have been computed by a computer program written in MATLAB language over one complete revolution of the crank shaft. The results are compared with a finite element simulation carried out by using ANSYS Workbench software and are found to be in good agreement. A graphical method (relative velocity and acceleration method) has been also applied for two phases of the crank shaft (q2 = 10° and 130°). The results obtained from this method (graphical) are compared with those obtained from analytical and numerical method and are found very acceptable. To make the analysis linear the friction force on the joints and sliding interface are neglected. All results, in this work, are obtained when the crank shaft turns at a uniform angular velocity (w2 = 188.5 rad/s) and time dependent gas pressure force on the slider crown.


2020 ◽  
Vol 82 (5) ◽  
pp. 617-625
Author(s):  
Pramod Kumar Yadav ◽  
Bhupesh Dutt Sharma ◽  
A. N. Filippov

Sign in / Sign up

Export Citation Format

Share Document