Recent Results for PowerPC Processor and Bridge Chip Testing

Author(s):  
Steven M. Guertin ◽  
Farokh Irom
Keyword(s):  
2018 ◽  
Author(s):  
Tuba Kiyan ◽  
Heiko Lohrke ◽  
Christian Boit

Abstract This paper compares the three major semi-invasive optical approaches, Photon Emission (PE), Thermal Laser Stimulation (TLS) and Electro-Optical Frequency Mapping (EOFM) for contactless static random access memory (SRAM) content read-out on a commercial microcontroller. Advantages and disadvantages of these techniques are evaluated by applying those techniques on a 1 KB SRAM in an MSP430 microcontroller. It is demonstrated that successful read out depends strongly on the core voltage parameters for each technique. For PE, better SNR and shorter integration time are to be achieved by using the highest nominal core voltage. In TLS measurements, the core voltage needs to be externally applied via a current amplifier with a bias voltage slightly above nominal. EOFM can use nominal core voltages again; however, a modulation needs to be applied. The amplitude of the modulated supply voltage signal has a strong effect on the quality of the signal. Semi-invasive read out of the memory content is necessary in order to remotely understand the organization of memory, which finds applications in hardware and software security evaluation, reverse engineering, defect localization, failure analysis, chip testing and debugging.


2021 ◽  
Vol 2 (1) ◽  
pp. 95
Author(s):  
Luca Dassi ◽  
Marco Merola ◽  
Eleonora Riva ◽  
Angelo Santalucia ◽  
Andrea Venturelli ◽  
...  

The current miniaturization trend in the market of inertial microsystems is leading to movable device parts with sizes comparable to the characteristic length-scale of the polycrystalline silicon film morphology. The relevant output of micro electro-mechanical systems (MEMS) is thus more and more affected by a scattering, induced by features resulting from the micro-fabrication process. We recently proposed an on-chip testing device, specifically designed to enhance the aforementioned scattering in compliance with fabrication constraints. We proved that the experimentally measured scattering cannot be described by allowing only for the morphology-affected mechanical properties of the silicon films, and etch defects must be properly accounted for too. In this work, we discuss a fully stochastic framework allowing for the local fluctuations of the stiffness and of the etch-affected geometry of the silicon film. The provided semi-analytical solution is shown to catch efficiently the measured scattering in the C-V plots collected through the test structure. This approach opens up the possibility to learn on-line specific features of the devices, and to reduce the time required for their calibration.


2008 ◽  
Vol 55 (4) ◽  
pp. 334-338 ◽  
Author(s):  
Yanjie Wang ◽  
A.M. Niknejad ◽  
V. Gaudet ◽  
K. Iniewski

Sign in / Sign up

Export Citation Format

Share Document