Analysis of a Functionally Graded Compliant Mechanism Surgical Grasper

Author(s):  
Jovana Jovanova ◽  
Angela Nastevska ◽  
Mary Frecker ◽  
Milton E. Aguirre
Author(s):  
Jovana Jovanova ◽  
Mary Frecker

The design of compliant mechanisms made of Nickel Titanium (NiTi) Shape Memory Alloys (SMAs) is considered to exploit the superelastic behavior of the material to achieve tailored high flexibility on demand. This paper focuses on two-stage design optimization of compliant mechanisms, as a systematic method for design of the composition of the functionally graded NiTi material within the compliant mechanism devices. The location, as well as geometric and mechanical properties, of zones of high and low flexibility will be selected to maximize mechanical performance. The proposed two-stage optimization procedure combines the optimization of an analytical model of a single-piece functionally graded unit, with a detailed FEA of a continuous compliant mechanism. In the first stage, a rigid-link model is developed to initially approximate the behavior of the compliant mechanism. In the second stage the solution of the rigid-link problem serves as the starting point for a continuous analytical model where the mechanism consists of zones with different material properties and geometry, followed by a detailed FEA of a compliant mechanism with integrated zones of superelasticity. The two-stage optimization is a systematic approach for compliant mechanism design with functional grading of the material to exploit superelastic response in controlled manner. Direct energy deposition, as an additive manufacturing technology, is foreseen to fabricate assemblies with multiple single piece functional graded components. This method could be applied to bio-inspired structures, flapping wings, flexible adaptive structures and origami inspired compliant mechanisms.


Author(s):  
Jovana Jovanova ◽  
Angela Nastevska ◽  
Mary Frecker

Cellular contact-aided compliant mechanisms (C3M) are cellular structures with integrated self-contact mechanisms, i.e. the segments can come into contact with each other during deformation. The contact changes the load path and can influence on the mechanism’s performance. Cellular contact-aided compliant mechanisms can be tailored for a specific structural application, such as energy absorption. Nickel Titanium compliant mechanisms can exploit the superelastic effect to improve performance and increase energy absorption. The potential for compliant mechanisms designed specifically for metal additive manufacturing opens the possibility of functional grading and tailoring the material properties locally for achieving overall performance. The combined effort of the geometry and the nonlinear material property increases the local compliance of the unit cell, resulting in higher energy absorption. A functionally graded 3D energy absorbing contact-aided compliant mechanisms cell with curved walls is analyzed. Functionally graded zones of higher flexibility are explored with different superelastic material properties. Introducing different moduli of elasticity as a function of the critical transformation stress results in different energy absorption. This approach can be used for tailoring the overall performance based on the application.


Author(s):  
Jovana Jovanova ◽  
Mary Frecker ◽  
Reginald F. Hamilton ◽  
Todd A. Palmer

Nickel Titanium (NiTi) shape memory alloys (SMAs) exhibit shape memory and/or superelastic properties, enabling them to demonstrate multifunctionality by engineering microstructural and compositional gradients at selected locations. This paper focuses on the design optimization of NiTi compliant mechanisms resulting in single-piece structures with functionally graded properties, based on user-defined target shape matching approach. The compositionally graded zones within the structures will exhibit an on demand superelastic effect (SE) response, exploiting the tailored mechanical behavior of the structure. The functional grading has been approximated by allowing the geometry and the superelastic properties of each zone to vary. The superelastic phenomenon has been taken into consideration using a standard nonlinear SMA material model, focusing only on 2 regions of interest: the linear region of higher Young’s modulus of elasticity and the superelastic region with significantly lower Young’s modulus of elasticity. Due to an outside load, the graded zones reach the critical stress at different stages based on their composition, position and geometry, allowing the structure morphing. This concept has been used to optimize the structures’ geometry and mechanical properties to match a user-defined target shape structure. A multi-objective evolutionary algorithm (NSGA II - Non-dominated Sorting Genetic Algorithm) for constrained optimization of the structure’s mechanical properties and geometry has been developed and implemented.


Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Sign in / Sign up

Export Citation Format

Share Document