A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections

Author(s):  
Te-Yu Jason Kao ◽  
Austin Ying-Kuang Chen ◽  
Yan Yan ◽  
Tze-Min Shen ◽  
Jenshan Lin
Author(s):  
Florian Starzer ◽  
Markus Ortner ◽  
Hans Peter Forstner ◽  
Reinhard Feger ◽  
Andreas Stelzer

2002 ◽  
Author(s):  
Ronald E. Reedy ◽  
Hal Anthony ◽  
Charles Kuznia ◽  
Mike Pendelton ◽  
Jim Cable ◽  
...  

2011 ◽  
Vol 3 (2) ◽  
pp. 139-145 ◽  
Author(s):  
Srdjan Glisic ◽  
J. Christoph Scheytt ◽  
Yaoming Sun ◽  
Frank Herzel ◽  
Ruoyu Wang ◽  
...  

A fully integrated transmitter (TX) and receiver (RX) front-end chipset, produced in 0.25 µm SiGe:C bipolar and complementary metal oxide semiconductor (BiCMOS) technology, is presented. The front-end is intended for high-speed wireless communication in the unlicensed ISM band of 9 GHz around 60 GHz. The TXand RX features a modified heterodyne topology with a sliding intermediate frequency. The TX features a 12 GHz in-phase and quadrature (I/Q) mixer, an intermediate frequency (IF) amplifier, a phase-locked loop, a 60 GHz mixer, an image-rejection filter, and a power amplifier. The RX features a low-noise amplifier (LNA), a 60 GHz mixer, a phase-locked loop (PLL), and an IF demodulator. The measured 1-dB compression point at the TX output is 12.6 dBm and the saturated power is 16.2 dBm. The LNA has measured noise figure of 6.5 dB at 60 GHz. Error-free data transmission with a 16 quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) signal and data rate of 3.6 Gbit/s (without coding 4.8 Gbit/s) over 15 m was demonstrated. This is the best reported result regarding both the data rate and transmission distance in SiGe and CMOS without beamforming.


Author(s):  
Apostolos Samelis ◽  
Edward Whittaker ◽  
Michael Ball ◽  
Alasdair Bruce ◽  
John Nisbet ◽  
...  

2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000067-000072
Author(s):  
Bradley A. Thrasher ◽  
William E. McKinzie ◽  
Deepukumar M. Nair ◽  
Michael A. Smith ◽  
Allan Beikmohamadi ◽  
...  

Presented here are the design, fabrication, and measurement results of a low temperature cofired ceramic (LTCC) chip-to-interposer transition utilizing a flip-chip ball grid array (BGA) interconnect that provides excellent electrical performance up to and including 80 GHz. A test board fabricated in LTCC is used as the interposer substrate and another smaller LTCC part is used as a surrogate chip for demonstration purposes. The BGA chip-to-interposer transition is designed as a back-to-back pair of transitions with an assembly consisting of an LTCC interposer, an LTCC test chip, and a BGA interconnect constructed with 260 μm diameter polymer core solder balls. The LTCC material employed is DuPont™ GreenTape™ 9K7. Full-wave simulation results predict excellent electrical performance from 10 MHz to 80 GHz, with the chip-to-interposer BGA transition having less than 0.5 dB insertion loss at 60 GHz and less than 1 dB insertion loss up to 80 GHz. In an assembled package (back-to-back BGA transitions), the insertion loss was measured to be 1 dB per transition at 60 GHz and less than 2 dB per transition for all frequencies up to 80 GHz.


Sign in / Sign up

Export Citation Format

Share Document