A Novel Global Localization Method Using 3D Laser Range Data in Large-Scale and Sparse Environments

Author(s):  
Ming Zhao ◽  
Jingchuan Wang ◽  
Weidong Chen ◽  
Hesheng Wang
2020 ◽  
Vol 10 (19) ◽  
pp. 6829
Author(s):  
Song Xu ◽  
Huaidong Zhou ◽  
Wusheng Chou

Conventional approaches to global localization and navigation mainly rely on metric maps to provide precise geometric coordinates, which may cause the problem of large-scale structural ambiguity and lack semantic information of the environment. This paper presents a scalable vision-based topological mapping and navigation method for a mobile robot to work robustly and flexibly in large-scale environment. In the vision-based topological navigation, an image-based Monte Carlo localization method is presented to realize global topological localization based on image retrieval, in which fine-tuned local region features from an object detection convolutional neural network (CNN) are adopted to perform image matching. The combination of image retrieval and Monte Carlo provide the robot with the ability to effectively avoid perceptual aliasing. Additionally, we propose an effective visual localization method, simultaneously employing the global and local CNN features of images to construct discriminative representation for environment, which makes the navigation system more robust to the interference of occlusion, translation, and illumination. Extensive experimental results demonstrate that ERF-IMCS exhibits great performance in the robustness and efficiency of navigation.


Author(s):  
Hervé Algrain ◽  
Calogero Conti ◽  
Pierre Dehombreux

Abstract Finite Element Model Updating has for objective to increase the correlation between the experimental dynamic responses of a structure and the predictions from a model. Among different initial choices, these procedures need to establish a set of representative parameters to be updated in which some are in real error and some are not. It is therefore important to select the correct properties that have to be updated to ensure that no marginal corrections are introduced. In this paper the standard localization criteria are presented and a technique to separate the global localization criteria in family-based criteria for damped structures is introduced. The methods are analyzed and applied to both numerical and experimental examples; a clear enhancement of the results is noticed using the family-based criteria. A simple way to qualify the stability of a localization method to noise is presented.


1983 ◽  
Vol 57 (1-4) ◽  
pp. 121-130 ◽  
Author(s):  
E. G. Masters ◽  
A. Stolz ◽  
B. Hirsch
Keyword(s):  

Author(s):  
Christoph Weinrich ◽  
Tim Wengefeld ◽  
Michael Volkhardt ◽  
Andrea Scheidig ◽  
Horst-Michael Gross

Sign in / Sign up

Export Citation Format

Share Document