An improved solar PV system for Malaysian rural electrification part I: Design and testing of solar PV with tracker and reflectors

Author(s):  
Norhazwani Abd Malek ◽  
Adlansyah Abd Rahman ◽  
Hasril Hasini ◽  
Mohd Nasharuddin Mohd Jaafar
Author(s):  
Amanda Halim ◽  
Ahmad Fudholi ◽  
Stephen Phillips ◽  
Kamaruzzaman Sopian

<p>At present, solar energy is perceived to be one of the world’s contributive energy sources. Holding characteristics such as inexhaustible and non-polluting, making it as the most prominent among renewable energy (RE) sources. The application of the solar energy has been well-developed and used for electricity generation through Photovoltaic (PV) as the harvesting medium. PV cells convert heat from the sun directly into the electricity to power up the electric loads. Solar PV system is commonly built in a rural area where it cannot be powered up by the utility grid due to location constrains. In order to avoid the electricity fluctuation because of unsteady amount of solar radiation, PV solar hybrid is the efficient solution for rural electrifications. This paper presents a review on optimised Hybrid Solar-PV Diesel system configurations installed and used to power up off grid settlements at various locations worldwide.</p>


The need to electrify all rural areas in India is quite compelling. However, the focus has now shifted from traditional fuel-based systems to generate electricity to renewable sources for energy generation. Though there are subsidies and policies that encourage the use of solar Photovoltaic (PV) systems, there is a need for an appropriate framework. This framework could not only offer substantial directions but it would also act as grounds to enhance rural electrification in India using solar PVs. From this perspective, the current research attempts to structure an innovative framework for solar PV system that could facilitate rural electrification in India. In particular, the district of Damoh in Madhya Pradesh was chosen as there are many villages without electricity in this district. PVsyst software was utilized to simulate the outcomes that included mathematical models and diverse components based on PV, for simulation. Three designs were developed to facilitate the simulation. These included; PVs linked with microgrid devoid of battery, individual PV systems without microgrid link and solar PVs linked to microgrid with battey. The framework for rural electrification using solar PVs will offer policy makers with insights with regards to implementing PV systems. It will also offer inputs as to the feasibility of implementing a specific system on several parameters. These would comprise of; number of households within a village, detached households etc. Nonetheless, research in future is also warranted to explore the scope for other sources of renewable energy.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 708 ◽  
Author(s):  
Muhammad Irfan ◽  
Zhen-yu Zhao ◽  
Munir Ahmad ◽  
Abdul Rehman

Fossil fuels are the primary sources of electricity generation in Pakistan. The energy demand and supply gap have intensified recently due to the massive population and fossil fuels are unable to meet the gigantic energy requirement of the country. Meanwhile, they also have adverse environmental impacts. Remote rural regions that are far away from the national grid do not have any means to fulfill their energy needs. The off-grid solar photovoltaic (PV) system has emerged to be the best energy option to electrify these remote regions. However, the strategic problem pertaining to local electricity generation is the absence of the area-specific generation capacity and economic feasibility data for solar energy. To address this problem, this study aims to assess the potential and economic viability of utilizing an off-grid solar PV system for rural electrification in the Punjab province of Pakistan. The research results reveal that there is an excellent solar irradiance in the rural areas of Punjab for electricity generation. In addition, suitable tilt angles have been calculated to increase the energy output of solar PV in the respective regions. Furthermore, this study has undertaken the economic viability for solar PV systems, and it was found that electricity generation from the solar PV costs Pakistani rupees (PKR) 7.15 per kWh and is much cheaper than conventional electricity, which costs PKR 20.7 per kWh. Besides, the system can reduce carbon emissions considerably. If 100% of the unelectrified households adopt solar PV system, then 617,020 metric tons of CO2 could be mitigated annually. Based on research findings, this study has suggested essential policy recommendations that would serve as a guideline for the government and stakeholders to maximum deploy the off-grid solar PV rural electrification programs in Punjab as well as on a national scale.


Author(s):  
Prince N Nwankwo

Abstract: The earth receives solar power at a rate of 120 petawatts, meaning that the energy obtained from the sun in a single day could satisfy the world’s energy needs for almost twenty years. Africa is often considered and referred as the "Sun continent" or the continent where the Sun's influence is the greatest, yet over 600 million people in sub-Saharan Africa live without electricity. This inexhaustible, untapped, abundant, and environmentally friendly solar energy potential encouraged solar power generation technologies to flourish faster than any other renewable energy technology most especially in Africa. The amount of electricity generated by a fixed-tilt solar PV system depends on the orientation of the PV panel (tilt and azimuth angle) relative to the sun. The panel of a solar PV system collect solar radiation more efficiently when the sun's rays are perpendicular to the panel: when the sun hits it directly at a 90o degree angle; but the sun is a moving target. Not only does it move across the sky throughout the day, but it is higher in the sky in the dry season (winter) from October to March and lower in the sky in the wet season (summer) from April to September. Since the climate is usually characterized into two seasons, the system optimization presented in this paper was carried out based on: yearly irradiation yield (fixed tilted plane) to guarantee optimum solar irradiation throughout the year, with 0.0% loss with respect to optimum. The system eliminates the challenges associated with changing the solar panel orientation every season, or using the expensive and inefficient sun tracker in tracking sun energy; while guaranteeing higher energy production, better system performance, lower system losses, and low operational cost. The system optimization was carried out with the “PVsyst simulation software” made for PV system designers and researchers to predict the performance of different solar system configurations, evaluate the results, and identify the best approach for maximum energy production. This paper investigated the optimal tilt and azimuth angle for solar panel orientation techniques for a typical rural community in Nigeria (Ndikelionwu) to advance rural electrification. After series of simulation and optimization processes; the best yearly irradiation yield was recorded when the solar panel is at 40o tilt and 0o Azimuth angle; with 0.0% loss with respect to optimum. Keywords: Optimization, PVsyst, Solar Irradiation, Tilt and Azimuth Angle, Global on Collector Plane, Fixed Tilted Plane, Rural Electrification, Solar Panel Orientation And Yearly Irradiation Yield.


2019 ◽  
Author(s):  
Rishal Asri

Sunlight is energy that can be converted into electrical energy. One of the uses is by applying it to the roof ofthe building. The application in this building has restrictions such as the placement of the PV moduleshorizontally and vertically. In the study comparing the results of energy obtained from the PV system withhorizontal and vertical positions with a standard degree angle in the direction of azimuth sunlight. Positionusing the horizontal produces more energy and reaches a performance ratio of more than 80%.


2018 ◽  
Author(s):  
Eric O’Shaughnessy ◽  
Dylan Cutler ◽  
Kristen Ardani ◽  
Robert Margolis

Sign in / Sign up

Export Citation Format

Share Document