scholarly journals Optimal Planning of a Stand-Alone Hybrid Energy Farm Encompassing Wind, PV, Diesel Generator and Storage Unit

Author(s):  
A. H. Azad ◽  
V. Vahidinasab ◽  
H. Shateri
2020 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Wesam H. Beitelmal ◽  
Paul C. Okonkwo ◽  
Fadhil Al Housni ◽  
Wael Alruqi ◽  
Omar Alruwaythi

Diesel generators are being used as a source of electricity in different parts of the world. Because of the significant expense in diesels cost and the requirement for a greener domain, such electric generating systems appear not to be efficient and environmentally friendly and should be tended to. This paper explores the attainability of utilizing a sustainable power source based on a cross-breed electric system in the cement factory in Salalah, Oman. The HOMER software that breaks down the system setup was utilized to examine the application and functional limitations of each hybridized plan. The result showed that a renewable-energy (RE)-based system has a lower cost of energy (COE) and net present cost (NPC) compared to diesel generator-based hybrid electric and standalone systems. Although the two pure renewable hybrid energy systems considered in this study displayed evidence of no emissions, lower NPC and COE values are observed in the photovoltaic/battery (PV/B) hybrid energy system compared with photovoltaic/wind turbine/battery (PV/WT/B). The PV/WT/B and PV/B systems have higher electricity production and low NPC and COE values. Moreover, the PV/B has the highest return on investment (ROI) and internal rate of return (IRR), making the system the most economically viable and adjudged to be a better candidate for rural community electrification demands.


2019 ◽  
Vol 113 ◽  
pp. 02017
Author(s):  
Mariagiovanna Minutillo ◽  
Alessandra Perna ◽  
Alessandro Sorce

This paper focuses on a biofuel-based Multi-Energy System generating electricity, heat and hydrogen. The proposed system, that is conceived as refit option for an existing anaerobic digester plant in which the biomass is converted to biogas, consists of: i) a fuel processing unit, ii) a power production unit based on the SOFC (Solid Oxide Fuel Cell) technology, iii) a hydrogen separation, compression and storage unit. The aim of this study is to define the operating conditions that allow optimizing the plant performances by applying the exergy analysis that is an appropriate technique to assess and rank the irreversibility sources in energy processes. Thus, the exergy analysis has been performed for both the overall plant and main plant components and the main contributors to the overall losses have been evaluated. Moreover, the first principle efficiency and the second principle efficiency have been estimated. Results have highlighted that the fuel processor (the Auto-Thermal Reforming reactor) is the main contributor to the global exergy destruction (9.74% of the input biogas exergy). In terms of overall system performance the plant has an exergetic efficiency of 53.1% (it is equal to 37.7% for the H2 production).


Author(s):  
Venkatesh Boddapati ◽  
S Arul Daniel

Mobility has been changing precipitously in recent years. With the increasing number of electric vehicles (EV), travel-sharing continues to grow, and ultimately, autonomous vehicles (AV) move into municipal fleets. These changes require a new, distributed, digitalised energy system, maintenance, and growing electrification in transportation. This paper proposes the designing of an Electric Vehicle Charging Station (EVCS) by using hybrid energy sources such as solar PV, wind, and diesel generator. The proposed system is mathematically modelled and designed using the Hybrid Optimization Model for Multiple Energy Resources (HOMER). The system is analysed and assessed in both autonomous mode and grid-connected mode of operation. The optimum sizing, energy yields of the system in each case is elaborated, and the best configuration is found for design. The variations in Levelized Cost Of the Energy (LCOE), Net Present Cost (NPC), initial cost, and operating cost of the various configuration are presented. From the results, it is observed that the grid-connected EVCS is more economical than the autonomous EVCS. Further, a sensitivity analysis of the EVCS is also performed.


2018 ◽  
Vol 85 (13) ◽  
pp. 1203-1217 ◽  
Author(s):  
Ketsuda Kongsawatvoragul ◽  
Saran Kalasina ◽  
Montakan Suksomboon ◽  
Nutthaphon Phattharasupakun ◽  
Juthaporn Wutthiprom ◽  
...  

2017 ◽  
Vol 6 (3) ◽  
pp. 263
Author(s):  
Chouaib Ammari

In this paper, we will size an optimum hybrid central content three different generators, two on renewable energy (solar photovoltaic and wind power) and two nonrenewable (diesel generator and storage system) because the new central generator has started to consider the green power technology in order for best future to the world, this central will use all the green power resource available and distributes energy to a small isolated village in southwest of Algeria named “Timiaouine”. The consumption of this village estimated with detailed in two season; season low consumption (winter) and high consumption (summer), the hybrid central will be optimized by program Hybrid Optimization Model for Electric Renewable (HOMER PRO), this program will simulate in two configuration, the first with storage system, the second without storage system and in the end the program HOMER PRO will choose the best configuration which is the mixture of both economic and ecologic configurations, this central warrants the energetic continuity of village.Article History: Received May 18th 2017; Received in revised form July 17th 2017; Accepted Sept 3rd 2017; Available onlineHow to Cite This Article: Ammari, C., Hamouda,M., and Makhloufi,S. (2017) Sizing and Optimization for Hybrid Central in South Algeria Based on Three Different Generators. International Journal of Renewable Energy Development, 6(3), 263-272.http://doi.org/10.14710/ijred.6.3.263-272


Sign in / Sign up

Export Citation Format

Share Document