Building blocks for an X-band SiGe BiCMOS T/R module

Author(s):  
T. Dinc ◽  
I. Kalyoncu ◽  
M. Kaynak ◽  
Y. Gurbuz
Keyword(s):  
X Band ◽  
2016 ◽  
Vol 9 (5) ◽  
pp. 965-976
Author(s):  
Rasmus S. Michaelsen ◽  
Tom K. Johansen ◽  
Kjeld M. Tamborg ◽  
Vitaliy Zhurbenko ◽  
Lei Yan

In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can be changed from –51 to –60.5 dB by tuning. Similarly, the IIP2can be improved from 41.3 to 48.7 dBm at 11 GHz, while the input referred 1-dB compression point is kept constant at 8 dBm. The tuning have no influence on conversion loss, which remains at 8.8 dB at a LO power level of 11 dBm at the center frequency of 11 GHz. The mixer has a 3 dB bandwidth from 8 to 13 GHz, covering the entire X-band. The full mixer has a size of 2050 μm × 1000 μm.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2198
Author(s):  
Zhichao Li ◽  
Shiheng Yang ◽  
Samuel B. S. Lee ◽  
Kiat Seng Yeo

For higher integration density, X-band power amplifiers (PAs) with CMOS technology have been widely discussed in recent publications. However, with reduced power supply voltage and device size, it is a great challenge to design a compact PA with high output power and power-added efficiency (PAE). In the proposed design, a 40-nm standard CMOS process is used for higher integration with other RF building blocks, compared with other CMOS PA designs with larger process node. Transistor cells are designed with neutralization capacitors to increase stability and gain performance of the PA. As a trade-off among gain, output power, and PAE, the transistor cells in driving stage and power stage are biased for class A and class AB operation, respectively. Both transistor cells consist of two transistors working in differential mode. Furthermore, transformer-based matching networks (TMNs) are used to realize a two-stage X-band CMOS PA with compact size. The PA achieves an effective conductivity (EC) of 117.5, which is among the highest in recently reported X-band PAs in CMOS technology. The PA also attains a saturated output power (Psat) of 20.7 dBm, a peak PAE of 22.4%, and a gain of 25.6 dB at the center frequency of 10 GHz under a 1 V supply in 40-nm CMOS.


Sign in / Sign up

Export Citation Format

Share Document