Classification of Acoustic Data Using the FF Neural Network and Random Forest Method

Author(s):  
Ali Nasret Najdet Coran ◽  
Zuhair Shakor Mahmood ◽  
Ayoub Esam Kamal
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2398 ◽  
Author(s):  
Bin Xie ◽  
Hankui K. Zhang ◽  
Jie Xue

In classification of satellite images acquired over smallholder agricultural landscape with complex spectral profiles of various crop types, exploring image spatial information is important. The deep convolutional neural network (CNN), originally designed for natural image recognition in the computer vision field, can automatically explore high level spatial information and thus is promising for such tasks. This study tried to evaluate different CNN structures for classification of four smallholder agricultural landscapes in Heilongjiang, China using pan-sharpened 2 m GaoFen-1 (meaning high resolution in Chinese) satellite images. CNN with three pooling strategies: without pooling, with max pooling and with average pooling, were evaluated and compared with random forest. Two different numbers (~70,000 and ~290,000) of CNN learnable parameters were examined for each pooling strategy. The training and testing samples were systematically sampled from reference land cover maps to ensure sample distribution proportional to the reference land cover occurrence and included 60,000–400,000 pixels to ensure effective training. Testing sample classification results in the four study areas showed that the best pooling strategy was the average pooling CNN and that the CNN significantly outperformed random forest (2.4–3.3% higher overall accuracy and 0.05–0.24 higher kappa coefficient). Visual examination of CNN classification maps showed that CNN can discriminate better the spectrally similar crop types by effectively exploring spatial information. CNN was still significantly outperformed random forest using training samples that were evenly distributed among classes. Furthermore, future research to improve CNN performance was discussed.


Author(s):  
Dongshik Kang ◽  
◽  
Sigeru Omatu ◽  
Michifumi Yoshioka

An advanced neuro-classification of new and used bills using the spectral patterns is proposed. An acoustic spectral pattern is obtained from the output of the two-stage adaptive digital filters (ADFs) for time-series acoustic data. The acoustic spectral patterns are fed to a competitive neural network, and classified into some categories which show worn-out degrees of the bill. The proposed method is based on extension of an ADF, an individual adaptation (IA) algorithm, and a learning vector quantization (LVQ) algorithm. The experimental results show that the proposed method is useful to classify new and used bills.


Author(s):  
Harits Ar Rosyid ◽  
Utomo Pujianto ◽  
Moch Rajendra Yudhistira

There are various ways to improve the quality of someone's education, one of them is reading. By reading, insight and knowledge of various kinds of things can increase. But, the ability and someone's understanding of reading is different. This can be a problem for readers if the reading material exceeds his comprehension ability. Therefore, it is necessary to determine the load of reading material using Lexile Levels. Lexile Levels are a value that gives a size the complexity of reading material and someone's reading ability. Thus, the reading material will be classified based a value on the Lexile Levels. Lexile Levels will cluster the reading material into 2 clusters which is easy, and difficult. The clustering process will use the k-means method. After the clustering process, reading material will be classified using the reading load Random Forest method. The k-means method was chosen because of the method has a simple computing process and fast also. Random Forest algorithm is a method that can build decision tree and it’s able to build several decision trees then choose the best tree. The results of this experiment indicate that the experiment scenario uses 2 cluster and SMOTE and GIFS preprocessing are carried out shows good results with an accuracy of 76.03%, precision of 81.85% and recall of 76.05%.


2021 ◽  
Author(s):  
Ryan Moore ◽  
Kristin R. Archer ◽  
Leena Choi

AbstractPurposeAccelerometers are increasingly utilized in healthcare research to assess human activity. Accelerometry data are often collected by mailing accelerometers to participants, who wear the accelerometers to collect data on their activity. The devices are then mailed back to the laboratory for analysis. We develop models to classify days in accelerometry data as activity from actual human wear or the delivery process. These models can be used to automate the cleaning of accelerometry datasets that are adulterated with activity from delivery.MethodsFor the classification of delivery days in accelerometry data, we developed statistical and machine learning models in a supervised learning context using a large human activity and delivery labeled accelerometry dataset. We extracted several features, which were included to develop random forest, logistic regression, mixed effects regression, and multilayer perceptron models, while convolutional neural network, recurrent neural network, and hybrid convolutional recurrent neural network models were developed without feature extraction. Model performances were assessed using Monte Carlo cross-validation.ResultsWe found that a hybrid convolutional recurrent neural network performed best in the classification task with an F1 score of 0.960 but simpler models such as logistic regression and random forest also had excellent performance with F1 scores of 0.951 and 0.957, respectively.ConclusionThe models developed in this study can be used to classify days in accelerometry data as either human or delivery activity. An analyst can weigh the larger computational cost and greater performance of the convolutional recurrent neural network against the faster but slightly less powerful random forest or logistic regression. The best performing models for classification of delivery data are publicly available on the open source R package, PhysicalActivity.


Sign in / Sign up

Export Citation Format

Share Document