Analysis Of closed loop control of matrix converter for capacitorless single phase induction motor for variable speed operation

Author(s):  
Shreedhar Tiwari ◽  
Mini Sujith
2015 ◽  
Vol 9 (1) ◽  
pp. 600-609
Author(s):  
Xuande Ji ◽  
Daqing He ◽  
Yunwang Ge

For disadvantages of the large flux and torque ripple and current waveform distortion of Direct Torque Control (BASIC-DTC), the DTC scheme for induction motor based on torque angle closed-loop control was presented and the proposed scheme was realized with three methods of torque angle closed-loop control. The main characteristics of three methods of torque angle closed-loop control for the proposed scheme was analyzed, emphasizing their advantages and disadvantages. The performance of three methods of torque angle closed-loop control for the proposed scheme was studied in terms of flux and torque ripple, current waveform distortion and transient responses. Simulation results showed that the proposed scheme improves the performance of induction motor BASIC-DTC by combining low flux ripple, low torque ripple and low current waveform distortion’s characteristics with fast dynamics.


2009 ◽  
Vol 628-629 ◽  
pp. 257-262 ◽  
Author(s):  
Tong Xing

The cutter head drive hydraulic system of φ1.8m simulate shield machine is introduced in this article, which has the variable speed pump control technique and the closed loop control method. The AMESim simulation model of the hydraulic system is built up, and the efficiency of the hydraulic system, speed control performance by open loop and closed loop control are analyzed. The result of the simulation shows that the variable speed pump control system has higher efficiency than the variable displacement pump control system about 4%-26% in the same condition when the cutter head speed is at the range of 0.5-4r/min, and the hydraulic system has good dynamic characteristics in closed-loop PID control.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ali Hmidet ◽  
Olfa Boubaker

In this paper, a new design of a real-time low-cost speed monitoring and closed-loop control of the three-phase induction motor (IM) is proposed. The proposed solution is based on a voltage/frequency (V/F) control approach and a PI antiwindup regulator. It uses the Waijung Blockset which considerably alleviates the heaviness and the difficulty of the microcontroller’s programming task incessantly crucial for the implementation and the management of such complex applications. Indeed, it automatically generates C codes for many types of microcontrollers like the STM32F4 family, also used in this application. Furthermore, it offers a cost-effective design reducing the system components and increasing its efficiency. To prove the efficiency of the suggested design, not only simulation results are carried out for a wide range of variations in load and reference speed but also experimental assessment. The real-time closed-loop control performances are proved using the aMG SQLite Data Server via the UART port board, whereas Waijung WebPage Designer (W2D) is used for the web monitoring task. Experimental results prove the accuracy and robustness of the proposed solution.


Sign in / Sign up

Export Citation Format

Share Document