Free vibrations of an anisotropic cylinder with the Ritz method

Author(s):  
Peng Hu ◽  
Bin Huang ◽  
Li-jun Yi ◽  
Ting-feng Ma ◽  
Jian-ke Du ◽  
...  
2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an isotropic, elastic annular disk constrained at some points on the inner and outer boundaries are investigated. The presented study is relevant to various practical problems including disks clamped by bolts along the inner and outer edges or the railway wheel vibrations. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. The boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to realize clamped conditions at discrete points. The frequency parameters for different point constraint conditions are evaluated and compared with those computed from a finite element model to demonstrate the validity of the proposed method. The computed mode shapes are presented for a disk with different point constraints at the inner and outer boundaries to demonstrate the free in-plane vibration behavior of the disk. Results show that addition of point supports causes some of the modes to split into two different frequencies with different mode shapes. The effects of different orientations of multiple point supports on the frequency parameters and mode shapes are also discussed.


2011 ◽  
Vol 18 (4) ◽  
pp. 627-640 ◽  
Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.


2015 ◽  
Vol 82 (11) ◽  
Author(s):  
François Robert Hogan ◽  
James Richard Forbes

The motion equations of a rolling flexible circular ring are derived using a Lagrangian formulation. The in-plane flexural and out-of-plane twist-bending free vibrations are modeled using the Rayleigh–Ritz method. The motion equations of a flexible circular ring translating and rotating in space are first developed and then constrained to roll on a flat surface by introducing Lagrange multipliers. The motion equations developed capture the nonholonomic nature of the circular ring rolling without slip on a flat surface. Numerical simulations are performed to validate the dynamic model developed and to investigate the effect of the flexibility of the circular ring on its trajectory. The vibrations of the circular ring are observed to impact the ring's motion.


2015 ◽  
Vol 757 ◽  
pp. 121-125
Author(s):  
Wei Ning ◽  
Feng Sheng Peng ◽  
Nan Wang ◽  
Dong Sheng Zhang

The free vibrations of the stiffened hollow conical shells with different variable thickness distribution modes are investigated in detail in the context of Donnel-Mushtari conical shell theory. Two sets of boundary conditions have been considered. The algebraic energy equations of the conical shell and the stiffeners are established separately. The Rayleigh-Ritz method is used to equate maximum strain energy to maximum kinetic energy which leads to a standard linear eigenvalue problem. Numerical results are presented graphically for different geometric parameters. The parametric study reveals the characteristic behavior which is useful in selecting the shell thickness distribution modes and the stiffener type. The comparison between the present results and those of finite element method shows that the present results agree well with those of finite element method.


Author(s):  
Shu-dong Ding ◽  
Jing-hui Wu ◽  
Long-tao Xie ◽  
Yang-yang Zhang ◽  
Rong-xing Wu ◽  
...  

Author(s):  
Sangle Sourabh ◽  
Verma Shesha ◽  
Mali Kiran

This work presents a formulation for the free vibrations of isotropic homogeneous rectangular Mindlin plates with variable thickness. These plates are subjected to general boundary supports in present study. To obtain arbitrarily supported boundary conditions, new form of trigonometric series expansion functions is used as the admissible functions for transverse deflection and rotation due to bending. In order to account the constant shear stress assumption, a shear stress correction factor is taken into consideration. The Rayleigh-Ritz Method is employed in this formulation. The boundaries are assumed to have three set of springs to achieve required boundary condition. Thus the changes in boundary conditions can be easily obtained by varying the stiffness of these springs, without actually making any changes in the shape functions. In this study, FEA (Finite Element Analysis) has been carried out for the Mindlin plates, for simply supported and constrained on two opposite sides.


1990 ◽  
Vol 57 (4) ◽  
pp. 995-999 ◽  
Author(s):  
E. F. Ayoub ◽  
A. W. Leissa

This paper presents the first known results for the free vibrations of a circular plate subjected to a pair of static, concentrated forces acting on the boundary at opposite ends of a diameter. The closed-form exact solution of the plane elasticity problem is used to provide the in-plane stress distribution for the vibration problem. A proper procedure using the Ritz method is developed for solving the latter problem for clamped, simply supported, or free boundary conditions. Numerical results are given for the vibration frequencies of a simply supported circular plate, which separate into four symmetry classes of mode shapes. Compressive buckling loads for each symmetry class are determined as a special case as the frequencies decrease to zero with increasing compressive force. Tracking the frequency versus loading data with increasing tensile forces shows that buckling due to tensile force can also occur, and the critical value of the force is found.


2013 ◽  
Vol 14 (01) ◽  
pp. 1350023 ◽  
Author(s):  
JAE-HOON KANG

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies of joined hemispherical–cylindrical shells of revolution with a top opening. Unlike conventional shell theories, which are mathematically two-dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components ur, uθ and uz in the radial, circumferential, and axial directions, respectively, are taken to be periodic in θ and in time, and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the joined shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies. Natural frequencies are presented for different boundary conditions. The frequencies from the present 3D method are compared with those from 2D thin shell theories.


Sign in / Sign up

Export Citation Format

Share Document