Design considerations of low-noise high-efficiency silicon IMPATT diodes

1973 ◽  
Vol 20 (8) ◽  
pp. 755-757 ◽  
Author(s):  
S. Su ◽  
S.M. Sze
Author(s):  
C. Xu ◽  
M. Muller

Air compression is one of the most important processes of air separation. Reliable design, higher performance, low noise, no resonant frequencies in the operating range and economic to manufacture are the goals of compressor design. Although CFD has been widely used in the compressor designs, there are many design considerations need to be addressed during the design. In this paper, the detailed design considerations for compressor configuration, power distribution for each stage, and possible field application issues are discussed in detail. The aerodynamic and structural optimization using CFD and FEA are performed to obtain a high efficiency and wide operating range compressor stage with for robust operation. The new compressor development process addressed in this paper provides the basic design guidance for future new compressor development.


1992 ◽  
Vol 28 (8) ◽  
pp. 706 ◽  
Author(s):  
M.J. Kearney ◽  
N.R. Couch ◽  
J.S. Stephens ◽  
R.S. Smith

1977 ◽  
Vol 24 (6) ◽  
pp. 655-657 ◽  
Author(s):  
Lang-Chee Chang ◽  
Ding-Hua Hu ◽  
Chao-Chen Wang

1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Thi Thuy Pham ◽  
Dongmin Kim ◽  
Seo-Hyeong Jeong ◽  
Junghyup Lee ◽  
Donggu Im

This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for wake-up receiver (WuRx) applications. The proposed envelope detector is based on a fully integrated inductively degenerated common-source amplifier with a series gate inductor. The LC-CL balun circuit is merged with the core of the envelope detector by sharing the on-chip gate and source inductors. The proposed technique doubles the transconductance of the input transistor of the envelope detector without any extra power consumption because the gate and source voltage on the input transistor operates in a differential mode. This results in a higher RF-to-DC conversion gain. In order to improve the sensitivity of the wake-up radio, the DC offset of the latch comparator circuit is canceled by controlling the body bias voltage of a pair of differential input transistors through a binary-weighted current source cell. In addition, the hysteresis characteristic is implemented in order to avoid unstable operation by the large noise at the compared signal. The hysteresis window is programmable by changing the channel width of the latch transistor. The low noise baseband amplifier amplifies the output signal of the envelope detector and transfers it into the comparator circuit with low noise. For the 2.4 GHz WuRx, the proposed envelope detector with no external matching components shows the simulated conversion gain of about 16.79 V/V when the input power is around the sensitivity of −60 dBm, and this is 1.7 times higher than that of the conventional envelope detector with the same current and load. The proposed RF-to-DC conversion circuit (WuRx) achieves a sensitivity of about −65.4 dBm based on 45% to 55% duty, dissipating a power of 22 μW from a 1.2 V supply voltage.


Author(s):  
Thore Bastian Lindemann ◽  
Jens Friedrichs ◽  
Udo Stark

For a competitive low pressure axial fan design low noise emission is as important as high efficiency. In this paper a new design method for low pressure fans with a small hub to tip ratio including blade sweep is introduced and discussed based on experimental investigations. Basis is an empirical axial and tangential velocity distribution at the rotor outlet combined with a distinctive sweep angle distribution along the stacking line. Several fans were designed, built and tested in order to analyze the aerodynamic as well as the aeroacoustic behavior. For the aerodynamic performance particular attention was paid to compensate the influence of reduced pressure rise and efficiency due to increasing blade sweep. This was achieved by a method of increasing the blade chord depending on the local sweep angle which is based on single airfoil data. The tested fans without this compensation revealed a significant noise reduction effect of up to approx. 6 dB(A) for a tip sweep angle of 64° which was accompanied by an unsatisfactory effect of reduced overall aerodynamic performance. The second group of fans did not only confirm the method of the aerodynamic compensation by a nearly unchanged pressure rise and efficiency characteristic but also revealed an increased aeroacoustic benefit of in average 9.5 dB(A) compared to the unswept version. Beside the overall characteristics the individual differences between the designs are also discussed using results of wall pressure measurements which show some significant changes of the blade tip flow structure.


Sign in / Sign up

Export Citation Format

Share Document