scholarly journals A High Efficiency Low Noise RF-to-DC Converter Employing Gm-Boosting Envelope Detector and Offset Canceled Latch Comparator

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Thi Thuy Pham ◽  
Dongmin Kim ◽  
Seo-Hyeong Jeong ◽  
Junghyup Lee ◽  
Donggu Im

This work presents a high efficiency RF-to-DC conversion circuit composed of an LC-CL balun-based Gm-boosting envelope detector, a low noise baseband amplifier, and an offset canceled latch comparator. It was designed to have high sensitivity with low power consumption for wake-up receiver (WuRx) applications. The proposed envelope detector is based on a fully integrated inductively degenerated common-source amplifier with a series gate inductor. The LC-CL balun circuit is merged with the core of the envelope detector by sharing the on-chip gate and source inductors. The proposed technique doubles the transconductance of the input transistor of the envelope detector without any extra power consumption because the gate and source voltage on the input transistor operates in a differential mode. This results in a higher RF-to-DC conversion gain. In order to improve the sensitivity of the wake-up radio, the DC offset of the latch comparator circuit is canceled by controlling the body bias voltage of a pair of differential input transistors through a binary-weighted current source cell. In addition, the hysteresis characteristic is implemented in order to avoid unstable operation by the large noise at the compared signal. The hysteresis window is programmable by changing the channel width of the latch transistor. The low noise baseband amplifier amplifies the output signal of the envelope detector and transfers it into the comparator circuit with low noise. For the 2.4 GHz WuRx, the proposed envelope detector with no external matching components shows the simulated conversion gain of about 16.79 V/V when the input power is around the sensitivity of −60 dBm, and this is 1.7 times higher than that of the conventional envelope detector with the same current and load. The proposed RF-to-DC conversion circuit (WuRx) achieves a sensitivity of about −65.4 dBm based on 45% to 55% duty, dissipating a power of 22 μW from a 1.2 V supply voltage.

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2033
Author(s):  
Ahmed Elgreatly ◽  
Ahmed Dessouki ◽  
Hassan Mostafa ◽  
Rania Abdalla ◽  
El-sayed El-Rabaie

Time-based analog-to-digital converter is considered a crucial part in the design of software-defined radio receivers for its higher performance than other analog-to-digital converters in terms of operation speed, input dynamic range and power consumption. In this paper, two novel voltage-to-time converters are proposed at which the input voltage signal is connected to the body terminal of the starving transistor rather than its gate terminal. These novel converters exhibit better linearity, which is analytically proven in this paper. The maximum linearity error is reduced to 0.4%. In addition, the input dynamic range of these converters is increased to 800 mV for a supply voltage of 1.2 V by using industrial hardware-calibrated TSMC 65 nm CMOS technology. These novel designs consist of only a single inverter stage, which results in reducing the layout area and the power consumption. The overall power consumption is 18 μW for the first proposed circuit and 15 μW for the second proposed circuit. The novel converter circuits have a resolution of 5 bits and operate at a maximum clock frequency of 500 MHz.


2016 ◽  
Vol 8 (4-5) ◽  
pp. 703-712
Author(s):  
Xin Yang ◽  
Xiao Xu ◽  
Takayuki Shibata ◽  
Toshihiko Yoshimasu

In this paper, a W-band (80 GHz) sub-harmonic mixer (SHM) IC is designed, fabricated and measured in 130-nm SiGe BiCMOS technology. The presented SHM IC makes use of a common emitter common collector transistor pair structure with a bottom-LO-configuration to decrease the LO power requirement and a tail current source to flatten the conversion gain. On-chip Marchand balun is designed for W-band on-wafer measurements. The SHM IC presented in this paper has exhibited a conversion gain of 3.9 dB at 80 GHz RF signal with an LO power of only −7 dBm at 39.5 GHz. The mixer core consumes only 0.68 mA at a supply voltage of 3.3 V.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Kudabay ◽  
◽  
A. Salikh ◽  
V.A. Moseichuk ◽  
A. Krivtsun ◽  
...  

The purpose of this paper is to design a microwave monolithic integrated circuit (MMIC) for low noise amplifier (LNA) X-band (7-12 GHz) based on technology of gallium nitride (GaN) high electron mobility transistor (HEMT) with a T-gate, which has 100 nm width, on a silicon (Si) semi-insulating substrate of the OMMIC company. The amplifier is based on common-source transistors with series feedback, which was formed by high-impedance transmission line, and with parallel feedback to match noise figure and power gain. The key characteristics of an LNA are noise figure and gain. However, in this paper, it was decided to design the LNA, which should have a good margin in terms of input and output power. As a result, GaN technology was chosen, which has a higher noise figure compared to other technologies, but eliminates the need for an input power limiter, which in turn significantly increases the overall noise figure. As a result LNA MMIC was developed with the following characteristics: noise figure less than 1.6 dB, small-signal gain more than 20 dB, return loss better than -13 dB and output power more than 19 dBm with 1 dB compression in the range from 7 to 12 GHz in dimensions 2x1.5 mm², which has a supply voltage of 8 V and a current consumption of less than 70 mA. However, it should be said that LNA was only modeled in the AWR DE.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8340
Author(s):  
Behnam S. Rikan ◽  
David Kim ◽  
Kyung-Duk Choi ◽  
Seyed Ali H. Asl ◽  
Joon-Mo Yoo ◽  
...  

This paper presents and discusses a Low-Band (LB) Low Noise Amplifier (LNA) design for a diversity receive module where the application is for multi-mode cellular handsets. The LB LNA covers the frequency range between 617 MHz to 960 MHz in 5 different frequency bands and a 5 Pole Single Throw (5PST) switch selects the different frequency bands where two of them are for the main and three for the auxiliary bands. The presented structure covers the gain modes from −12 to 18 dB with 6 dB gain steps where each gain mode has a different current consumption. In order to achieve the Noise Figure (NF) specifications in high gain modes, we have adopted a cascode Common-Source (CS) with inductive source degeneration structure for this design. To achieve the S11 parameters and current consumption specifications, the core and cascode transistors for high gain modes (18 dB, 12 dB, and 6 dB) and low gain modes (0 dB, −6 dB, and −12 dB) have been separated. Nevertheless, to keep the area low and keep the phase discontinuity within ±10∘, we have shared the degeneration and load inductors between two cores. To compensate the performance for Process, Voltage, and Temperature (PVT) variations, the structure applies a Low Drop-Out (LDO) regulator and a corner case voltage compensator. The design has been proceeded in a 65-nm RSB process design kit and the supply voltage is 1 V. For 18 dB and −12 dB gain modes as two examples, the NF, current consumption, and Input Third Order Intercept Point (IIP3) values are 1.2 dB and 16 dB, 10.8 mA and 1.2 mA, and −6 dBm and 8 dBm, respectively.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2655
Author(s):  
Zhaokun Zhou ◽  
Xiaoran Li ◽  
Xinghua Wang ◽  
Wei Gu

This paper presents an ultra-wideband (UWB) down-conversion mixer with low-noise, high-gain and small-size. The negative impedance technique and source input method are applied for the proposed mixer. The negative impedance achieves the dynamic current injection and increases the mixer output impedance, which reduces the mixer flicker noise and increases its conversion gain. The source input method allows the input matching networks to be cancelled, avoiding the noise and loss introduced by the matching resistors, saving the chip area occupied by the matching inductors. The proposed mixer is designed in 45-nm SOI process provided by GlobalFoundries. The simulation results show a conversion gain of 11.4–14.3 dB, ranging from 3.1 to 10.6 GHz, a minimum noise figure of 9.8 dB, a RF port return loss of less than −11 dB, a port-to-port isolation of better than −48 dB, and a core chip area of 0.16 × 0.16 mm2. The power consumption from a 1 V supply voltage is 2.85 mW.


This paper describes a new CMOS realization of differential difference current conveyor circuit. The proposed design offers enhanced characteristics compared to DDCC circuits previously exhibited in the literature. It is characterized by a wide dynamic range with good accuracy thanks to use of adaptive biasing circuit instead of a constant bias current source as well as a wide bandwidth (560 MHz) and a low parasitic resistance at terminal X about 6.86 Ω. A voltage mode instrumentation amplifier circuit (VMIA) composed of a DDCC circuit and two active grounded resistances is shown as application. The proposed VMIA circuit is intended for high frequency applications. This configuration offers significant improvement in accuracy as compared to the state of the art. It is characterized by a controllable gain, a large dynamic range with THD less than 0.27 %, a low noise density (22 nV/Hz1/2) with a power consumption about 0.492 mW and a wide bandwidth nearly 83 MHz. All proposed circuits are simulated by TSPICE using CMOS 0.18 μm TSMC technology with ± 0.8 V supply voltage to verify the theoretical results.


This discourse used 45nm CMOS technology to design a Low noise amplifier for a Noise figure < 2dB and gain greater than 13dB at the 60GHz unlicensed band of frequency. A single stage, primary cascode LNA is modeled and its small signal model is analyzed. Common source structure is hired in the driver stage to escalate the output power with single stage contours. To enhance small signal gain, simple active transistor feedback and cascode feedback configurations are designed and appended to the basic LNA. In addition to this, current re-use inductor is designed and added to the cascode amplifier which is deliberated to give low power and low noise figure. Small signal analysis of simple active transistor feedback and current re-use inductor has been presented. The measurement results indicated that the input match and the output gain at 60GHz achieves -8dB and 13dB respectively with the supply voltage of 900mV. The frequency response obtained is a narrow band response with 6GHz of bandwidth. The circuit is simulated by Cadence Virtuoso tool. The layout of the related circuit is drawn by means of the Virtuoso Layout editor with total size of 0.1699μm2.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750134 ◽  
Author(s):  
Jun-Da Chen ◽  
Song-Hao Wang

The paper presents a novel 5.15[Formula: see text]GHz–5.825[Formula: see text]GHz SiGe Bi-CMOS down-conversion mixer for WLAN 802.11a receiver. The architecture used is based on Gilbert cell mixer, the combination of MOS transistors and HBT BJT transistor device characteristics. The hetero-junction bipolar transistor (HBT) topology is adopted at the transconductance stage to improve power gain and reduce noise factor, and the LO series-parallel CMOS switch topology will be applied to reduce supply voltage and dc power at the switching stage. This mixer is implemented in TSMC 0.35-[Formula: see text]m SiGe Bi-CMOS process, and the chip size including the test pads is 1.175*0.843[Formula: see text]mm2. The main advantages for the proposed mixer are high conversion gain, a moderate linearity, low noise figure, and low power. The post-simulation results achieved are as follows: 14[Formula: see text]dB power conversion gain, [Formula: see text]6[Formula: see text]dBm input third-order intercept point (IIP3), 6.85[Formula: see text]dB double side band (DSB) noise figure. The total mixer current is about 1.54[Formula: see text]mA from 1.4[Formula: see text]V supply voltage including output buffer. The total dc power consumption is 2.15[Formula: see text]mW.


Author(s):  
S.A.Z. Murad ◽  
A. F. Hasan ◽  
A. Azizan ◽  
A. Harun ◽  
J. Karim

<span>This paper presents a concurrent dual-band CMOS low noise amplifier (LNA) at operating frequency of 2.4 GHz and 5.2 GHz for WLAN applications. The proposed LNA employed cascode common source to obtain high gain using 0.13-µm CMOS technology. The concurrent dual-band frequencies are matched using LC network band-pass and band-stop notch filter at the input and output stages. The filters help to shape the frequency response of the proposed LNA. The simulation results indicate that the LNA achieves a forward gain of 21.8 dB and 14.22 dB, input return loss of -18 dB and -14 dB at 2.4 GHz and 5.2 GHz, respectively. The noise figure of 4.1 dB and 3.5 dB with the input third-order intercept points 7 dBm and 10 dBm are obtained at 2.4 GHz and 5.2 GHz, respectively. The LNA dissipates 2.4 mW power at 1.2 V supply voltage with a chip size of 1.69 mm2.</span>


2020 ◽  
Vol 9 (1) ◽  
pp. 396-402
Author(s):  
S. A. Z. Murad ◽  
A. Azizan ◽  
A. F. Hasan

This paper describes the design topology of a ultra-low power low noise amplifier (LNA) for wireless sensor network (WSN) application. The proposed design of ultra-low power 2.4 GHz CMOS LNA is implemented using 0.13-μm Silterra technology. The LNA benefits of low power from forward body bias technique for first and second stages. Two stages are implemented in order to enhance the gain while obtaining low power consumption for overall circuit. The simulation results show that the total power consumed is only 0.45 mW at low supply voltage of 0.55 V. The power consumption is decreased about 36% as compared with the previous work. A gain of 15.1 dB, noise figure (NF) of 5.9 dB and input third order intercept point (IIP3) of -2 dBm are achieved. The input return loss (S11) and the output return loss (S22) is -17.6 dB and -12.3 dB, respectively. Meanwhile, the calculated figure of merit (FOM) is 7.19 mW-1.


Sign in / Sign up

Export Citation Format

Share Document