Comments on "Observer design for a linear functional of the state vector"

1974 ◽  
Vol 19 (2) ◽  
pp. 169-170 ◽  
Author(s):  
G. Bertoni ◽  
S. Beghelli ◽  
G. Capitani ◽  
M. Tibaldi
AIAA Journal ◽  
1974 ◽  
Vol 12 (9) ◽  
pp. 1288-1289 ◽  
Author(s):  
PETER MURDOCH

2016 ◽  
Vol 40 (2) ◽  
pp. 477-503 ◽  
Author(s):  
Dinh Cong Huong

This paper presents a fresh approach to the design of state observers for a class of time-delay systems with one time delay in the state and output vectors. By proposing a new coordinate state transformation, the system is first transformed into the new coordinates where all the delay terms associated with the state variables are injected into the system’s output and input. Thus, in the new coordinate system, a Luenberger-type state observer can be easily designed. Then, a backward state transformation problem is studied which allows us to reconstruct the original state vector of the system. Conditions for the existence of the state transformations and an algorithm for computing them are provided in this paper. We show that our approach works for a wider class of time-delay systems in the sense that when some existing state observer design methods fail to reconstruct the state vector, the proposed new change of coordinates and the observer scheme in this paper can still reconstruct the original state vector. Numerical examples and simulation results are given to illustrative the effectiveness of the proposed design approach.


Author(s):  
Federico Cheli ◽  
Ferruccio Resta ◽  
Edoardo Sabbioni

An observer for controlled suspension is presented in this paper based on acceleration measurements. The proposed observer allows to estimate the system states and can be profitably used in a state-derivative feed-back control. This kind of control, designed in the reciprocal-state-space framework (RSS), is based on the optimal control theory and consists in minimizing the derivative of the state vector instead of the state vector itself.


2016 ◽  
pp. 4039-4042
Author(s):  
Viliam Malcher

The interpretation problems of quantum theory are considered. In the formalism of quantum theory the possible states of a system are described by a state vector. The state vector, which will be represented as |ψ> in Dirac notation, is the most general form of the quantum mechanical description. The central problem of the interpretation of quantum theory is to explain the physical significance of the |ψ>. In this paper we have shown that one of the best way to make of interpretation of wave function is to take the wave function as an operator.


2018 ◽  
Vol 15 (1) ◽  
pp. 12-22
Author(s):  
V. M. Artyushenko ◽  
D. Y. Vinogradov

The article reviewed and analyzed the class of geometrically stable orbits (GUO). The conditions of stability in the model of the geopotential, taking into account the zonal harmonics. The sequence of calculation of the state vector of GUO in the osculating value of the argument of the latitude with the famous Ascoli-royski longitude of the ascending node, inclination and semimajor axis. The simulation is obtained the altitude profiles of SEE regarding the all-earth ellipsoid model of the gravitational field of the Earth given 7 and 32 zonal harmonics.


2016 ◽  
Author(s):  
Jean M. Bergeron ◽  
Mélanie Trudel ◽  
Robert Leconte

Abstract. The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in the state vector. This study examines the impact of multivariate synthetic data assimilation using the Ensemble Kalman Filter (EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British-Columbia, Canada. Synthetic data includes daily snow cover area (SCA), daily measurements of snow water equivalent (SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the observations are the ones worth considering adding to the state vector. The performance of the assimilation of basin-wide SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The combined assimilation of streamflow and SWE performs better than its individual counterparts, offering improvements over all forecast horizons considered and throughout the whole year, including the critical period of snowmelt. This highlights the potential benefit of using multivariate data assimilation for streamflow predictions in snow-dominated regions.


2021 ◽  
Vol 13 (17) ◽  
pp. 3389
Author(s):  
Pei Ye ◽  
Meng-Dao Xing ◽  
Xiang-Gen Xia ◽  
Guang-Cai Sun ◽  
Yachao Li ◽  
...  

In a short observation time, after the range alignment and phase adjustment, the motion of a target can be approximated as a uniform rotation. The radar observing process can be simply described as multiplying an observation matrix on the ISAR image, which can be thought of as a linear system. It is known that the longer observation time is, the higher cross-range resolution is. In order to deal with the conflict between short observation time and high cross-range resolution, we introduce Kalman filtering (KF) into the ISAR imaging and propose a novel method to reconstruct a high-resolution image with short time observed data. As KF has excellent reconstruction performance, it leads to a good application in ISAR image reconstruction. At each observation aperture, the reconstructed image denotes the state vector in KF at the aperture time. It is corrected by a two-step KF process: prediction and update. As iteration continues, the state vector is gradually corrected to a well-focused high-resolution image. Thus, the proposed method can obtain a high-resolution image in a short observation time. Both simulated and real data are applied to demonstrate the performance of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document