Exponential Stabilization of a Star-Shaped Thermoelastic Network System Based on the Extended State Observer With Time-Varying Gains

2021 ◽  
Vol 66 (1) ◽  
pp. 267-274 ◽  
Author(s):  
Lei Wang ◽  
Zhiqiang Gao ◽  
Xuesong Zhou ◽  
Zhongjie Han
2019 ◽  
Vol 42 (5) ◽  
pp. 1070-1080
Author(s):  
Guichao Yang

In this paper, a novel nonlinear robust controller ensuring time-varying output constraints for the double-rod hydraulic servo systems in the presence of largely unknown matched and mismatched disturbances is proposed. By employing two extended state observers for each channel of the load dynamics and pressure dynamics of the considered hydraulic system, the large matched and mismatched disturbances are successfully compensated. In addition, a time-varying barrier Lyapunov function (BLF) of asymmetric type has been employed to make sure that the position output is never violated. The resulting controller is synthesized using the backstepping procedure. The stability of the whole closed-loop hydraulic system associated with the dual extended state observer (ESO)-based controller is strictly guaranteed. In theory, the proposed control strategy can not only ensure the output satisfy the preset constrained space, but also enhance the output tracking performance when the system faces various largely unknown disturbances. The effectiveness of the proposed controller has also been demonstrated via comparative simulation results.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dejun Liu ◽  
Jinfei Xu ◽  
Ruonan Xue ◽  
Chao Song ◽  
Zhenxiong Zhou

In the photovoltaic inverter grid-connected power generation system, the output power of photovoltaic panels is affected by illumination and temperature. The change of output power of photovoltaic panels will lead to the fluctuation of DC bus voltage. If the control is improper, it will directly affect the regular operation of the system. In order to improve the performance of the grid-connected inverter system, an active disturbance rejection control method based on adaptive extended state observer (ESO) is proposed. Firstly, a feedforward PI current inner loop controller is designed, which simplifies the structure of the control system and improves the tracking performance of the current. Then, the DC bus voltage outer loop ADRC is designed, and a conversion method that ignores the essential difference between nonlinear/time-varying and time-varying/linear is proposed. Through the conversion of time-invariant nonlinear system and time-varying linear system, the stability of the extended state observer is proved by the Routh criterion. Secondly, to solve the problem of mutual restriction between the stability and observation accuracy of the extended state observer, an adaptive function online automatic tuning ESO parameter method is proposed. Finally, the simulation results show that the proposed method has better dynamic and static performance, and the grid-connected voltage and current harmonics are small, which proves the correctness and effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document