scholarly journals Research on Photovoltaic Grid-Connected Control Strategy Based on Active Disturbance Rejection of Adaptive Extended State Observer

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dejun Liu ◽  
Jinfei Xu ◽  
Ruonan Xue ◽  
Chao Song ◽  
Zhenxiong Zhou

In the photovoltaic inverter grid-connected power generation system, the output power of photovoltaic panels is affected by illumination and temperature. The change of output power of photovoltaic panels will lead to the fluctuation of DC bus voltage. If the control is improper, it will directly affect the regular operation of the system. In order to improve the performance of the grid-connected inverter system, an active disturbance rejection control method based on adaptive extended state observer (ESO) is proposed. Firstly, a feedforward PI current inner loop controller is designed, which simplifies the structure of the control system and improves the tracking performance of the current. Then, the DC bus voltage outer loop ADRC is designed, and a conversion method that ignores the essential difference between nonlinear/time-varying and time-varying/linear is proposed. Through the conversion of time-invariant nonlinear system and time-varying linear system, the stability of the extended state observer is proved by the Routh criterion. Secondly, to solve the problem of mutual restriction between the stability and observation accuracy of the extended state observer, an adaptive function online automatic tuning ESO parameter method is proposed. Finally, the simulation results show that the proposed method has better dynamic and static performance, and the grid-connected voltage and current harmonics are small, which proves the correctness and effectiveness of the proposed method.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Min Zhu ◽  
Hamid Reza Karimi ◽  
Hui Zhang ◽  
Qing Gao ◽  
Yong Wang

An active disturbance rejection station-keeping control scheme is derived and analyzed for station-keeping missions of spacecraft along a class of unstable periodic orbits near collinear libration points of the Sun-Earth system. It is an error driven, rather than model-based control law, essentially accounting for the independence of model accuracy and linearization. An extended state observer is designed to estimate the states in real time by setting an extended state, that is, the sum of unmodeled dynamic and external disturbance. This total disturbance is compensated by a nonlinear state error feedback controller based on the extended state observer. A nonlinear tracking differentiator is designed to obtain the velocity of the spacecraft since only position signals are available. In addition, the system contradiction between rapid response and overshoot can be effectively solved via arranging the transient process in tracking differentiator. Simulation results illustrate that the proposed method is adequate for station-keeping of unstable Halo orbits in the presence of system uncertainties, initial injection errors, solar radiation pressure, and perturbations of the eccentric nature of the Earth's orbit. It is also shown that the closed-loop control system performance is improved significantly using our method comparing with the general LQR method.


2020 ◽  
Vol 25 (1) ◽  
pp. 13
Author(s):  
Vania Lara-Ortiz ◽  
Ivan Salgado ◽  
David Cruz-Ortiz ◽  
Alejandro Guarneros ◽  
Misael Magos-Sanchez ◽  
...  

This study presents the design of a hybrid active disturbance rejection controller (H-ADRC) which regulates the gait cycle of a worm bio-inspired robotic device (WBRD). The WBRD is designed as a full actuated six rigid link robotic manipulator. The controller considers the state restrictions in the device articulations; this means the maximum and minimum angular ranges, to avoid any possible damage to the structure. The controller uses an active compensation method to estimate the unknown dynamics of the WBRD by means of an extended state observer. The sequence of movements for the gait cycle of a WBRD is represented as a class of hybrid system by alternative reference frameworks placed at the first and the last link. The stability analysis employs a class of Hybrid Barrier Lyapunov Function to ensure the fulfillment of the angular restrictions in the robotic device. The proposed controller is evaluated using a numerical simulation system based on the virtual version of the WBRD. Moreover, experimental results confirmed that the H-ADRC may endorse the realization of the proposed gait cycle despite the presence of perturbations and modeling uncertainties. The H-ADRC is compared against a proportional derivative (PD) controller and a proportional-integral-derivative (PID) controller. The H-ADRC shows a superior performance as a consequence of the estimation provided by the homogeneous extended state observer.


Author(s):  
Jingxin Dou ◽  
Xiangxi Kong ◽  
Bangchun Wen

This paper presents a new active disturbance rejection controller to solve the altitude and attitude control problem for a quadrotor unmanned aerial vehicle. The proposed method requires only the output information of the system. Using the pitch subsystem as an example, the proposed controller is designed by using dynamic surface control strategy incorporated with tracking differentiator, and extended state observer, which is used to estimate the uncertain disturbance. The estimate states of extended state observer are used to design the dynamic surface control law for altitude and attitude tracking problem of the quadrotor unmanned aerial vehicle. The stability analysis proves that a sufficient condition of the asymptotic stability of the extended state observer is achieved, the asymptotic stability of the closed-loop system can be guaranteed, and the tracking feedback error can made arbitrarily small by adjusting the controller parameters. Several simulation results are presented to corroborate that the proposed control method has better effectiveness and robustness.


Sign in / Sign up

Export Citation Format

Share Document