Distributed Observer-Based Cooperative Control Approach for Uncertain Nonlinear MASs Under Event-Triggered Communication

Author(s):  
Chao Deng ◽  
Changyun Wen ◽  
Jiangshuai Huang ◽  
Xian-Ming Zhang ◽  
Ying Zou
2021 ◽  
Author(s):  
Deming Xu ◽  
Ze Li ◽  
Guozeng Cui ◽  
Wanjun Hao ◽  
Fuyuan Hu

Abstract The secondary cooperative control problem of an islanded microgrid through event-triggered mechanism is investigated in this paper. A distributed fixedtime secondary cooperative control strategy is proposed to obtain frequency and voltage magnitude secondary restoration, and also a proportional active power sharing under an undirected topology. We consider a centralized event-triggered mechanism to alleviate the communication burden and reduce the frequency of controllers update. Through this mechanism, the distributed fixed-time control protocols using frequency, voltage magnitude and active power sampling measurement values of distributed generations (DGs) only when the predefined event-triggered condition is satisfied. Compared with the conventional distributed asymptotic control protocols under period-triggered communication, the secondary control objectives of an islanded microgrid are achieved within a fixed settling time by applying the presented distributed fixed-time control approach, and the upper bound of settling time is unrelated to any initial states. Meanwhile, the presented centralized event-triggered communication method exhibits excellent performance in alleviating communication burden and promoting control efficiency. The theoretical proof is given by adopting Lyapunov method. The simulation studies are conducted to illustrate the effectiveness of the proposed control scheme.


2022 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Jiqiang Li ◽  
Guoqing Zhang ◽  
Bo Li

Around the cooperative path-following control for the underactuated surface vessel (USV) and the unmanned aerial vehicle (UAV), a logic virtual ship-logic virtual aircraft (LVS-LVA) guidance principle is developed to generate the reference heading signals for the USV-UAV system by using the “virtual ship” and the “virtual aircraft”, which is critical to establish an effective correlation between the USV and the UAV. Taking the steerable variables (the main engine speed and the rudder angle of the USV, and the rotor angular velocities of the UAV) as the control input, a robust adaptive neural cooperative control algorithm was designed by employing the dynamic surface control (DSC), radial basic function neural networks (RBF-NNs) and the event-triggered technique. In the proposed algorithm, the reference roll angle and pitch angle for the UAV can be calculated from the position control loop by virtue of the nonlinear decouple technique. In addition, the system uncertainties were approximated through the RBF-NNs and the transmission burden from the controller to the actuators was reduced for merits of the event-triggered technique. Thus, the derived control law is superior in terms of the concise form, low transmission burden and robustness. Furthermore, the tracking errors of the USV-UAV cooperative control system can converge to a small compact set through adjusting the designed control parameters appropriately, and it can be also guaranteed that all the signals are the semi-global uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the proposed algorithm has been verified via numerical simulations in the presence of the time-varying disturbances.


Author(s):  
Hongwei Wang ◽  
Qianqian Zhao ◽  
Siyu Lin ◽  
DongLiang Cui ◽  
Chengcheng Luo ◽  
...  

2019 ◽  
Vol 9 (5) ◽  
pp. 924 ◽  
Author(s):  
Yahui Gan ◽  
Jinjun Duan ◽  
Ming Chen ◽  
Xianzhong Dai

In this paper, the trajectory planning and position/force coordination control of multi-robot systems during the welding process are discussed. Trajectory planning is the basis of the position/ force cooperative control, an object-oriented hierarchical planning control strategy is adopted firstly, which has the ability to solve the problem of complex coordinate transformation, welding process requirement and constraints, etc. Furthermore, a new symmetrical internal and external adaptive variable impedance control is proposed for position/force tracking of multi-robot cooperative manipulators. Based on this control approach, the multi-robot cooperative manipulator is able to track a dynamic desired force and compensate for the unknown trajectory deviations, which result from external disturbances and calibration errors. In the end, the developed control scheme is experimentally tested on a multi-robot setup which is composed of three ESTUN industrial manipulators by welding a pipe-contact-pipe object. The simulations and experimental results are strongly proved that the proposed approach can finish the welding task smoothly and achieve a good position/force tracking performance.


Sign in / Sign up

Export Citation Format

Share Document