A Modified Karhunen-Loeve Model of Gravity Disturbance Vector

1986 ◽  
Vol AES-22 (6) ◽  
pp. 703-707 ◽  
Author(s):  
S.N. Gupta
Geophysics ◽  
1988 ◽  
Vol 53 (10) ◽  
pp. 1355-1361 ◽  
Author(s):  
Steven J. Brzezowski ◽  
Warren G. Heller

Gradiometer system noise, sampling effects, downward continuation, and limited data extent are the important contributors to moving‐base gravity gradiometer survey error. We apply a two‐dimensional frequency‐domain approach in simulations of several sets of airborne survey conditions to assess the significance of the first two sources. A special error allocation technique is used to account for the downward continuation and limited extent effects. These two sources cannot be modeled adequately as measurement noise in a linear error estimation algorithm. For a typical characterization of the Earth’s gravity field, our modeling indicates that limited data extent generally contributes about one‐half of the total error variance associated with recovery of the gravity disturbance vector at the Earth’s surface; gradiometer system noise typically contributes about one‐third. However, sampling effects are also very important (and are controlled through the survey track spacing). A 5 km track spacing provides a reasonable tradeoff between survey cost and errors due to track spacing. Furthermore, our results indicate that a moving‐base gravity gradiometer system can recover each component of the gravity disturbance vector with an rms accuracy better than 1.0 mGal.


2021 ◽  
Author(s):  
O. A. Stepanov ◽  
D. A. Koshaev ◽  
O. M. Yashnikova ◽  
A. V Motorin ◽  
L. P. Staroseltsev

AbstractThe work considers the results of filtering and smoothing of the gravity disturbance vector horizontal components and focuses on the sensitivity of these results to the model parameters in the case when the inertial-geodesic method is applied in the framework of a marine survey on a sea vessel.


2020 ◽  
Author(s):  
Vadim Vyazmin ◽  
Yuri Bolotin

<p>Airborne gravimetry is capable to provide Earth’s gravity data of high accuracy and spatial resolution for any area of interest, in particular for hard-to-reach areas. An airborne gravimetry measuring system consists of a stable-platform or strapdown gravimeter, and GNSS receivers. In traditional (scalar) airborne gravimetry, the vertical component of the gravity disturbance vector is measured. In actively developing vector gravimetry, all three components of the gravity disturbance vector are measured.</p><p>In this research, we aim at developing new postprocessing algorithms for estimating gravity from airborne data taking into account a priori information about spatial behavior of the gravity field in the survey area. We propose two algorithms for solving the following two problems:</p><p>1) <em>In scalar gravimetry:</em>  Mapping gravity at the flight height using the gravity disturbances estimated along the flight lines (via low-pass or Kalman filtering), taking into account spatial correlation of the gravity field in the survey area and statistical information on the along-line gravity estimate errors.</p><p>2) <em>In vector gravimetry:</em>  Simultaneous determination of three components of the gravity disturbance vector from airborne measurements at the flight path.</p><p>Both developed algorithms use an a priori spatial gravity model based on parameterizing the disturbing potential in the survey area by three-dimensional harmonic spherical scaling functions (SSFs). The algorithm developed for solving Problem 1 provides estimates of the unknown coefficients of the a priori gravity model using a least squares technique. Due to the assumption that the along-line gravity estimate errors at any two lines are not correlated, the algorithm has a recursive (line-by-line) implementation. At the last step of the recursion, regularization is applied due to ill-conditioning of the least squares problem. Numerical results of processing the GT-2A airborne gravimeter data are presented and discussed.</p><p>To solve Problem 2, one need to separate the gravity horizontal component estimates from systematic errors of the inertial navigation system (INS) of a gravimeter (attitude errors, inertial sensor bias). The standard method of gravity estimation based on gravity modelling over time is not capable to provide accurate results, and additional corrections should be applied. The developed algorithm uses a spatial gravity model based on the SSFs. The coefficients of the gravity model and the INS systematic errors are estimated simultaneously from airborne measurements at the flight path via Kalman filtering with regularization at the last time moment. Results of simulation tests show a significant increase in accuracy of gravity vector estimation compared to the standard method.</p><p>This research was supported by RFBR (grant number 19-01-00179).</p>


1999 ◽  
Vol 17 (11) ◽  
pp. 1426-1438 ◽  
Author(s):  
R. G. Rastogi

Abstract. The work describes an intensive study of storm sudden commencement (SSC) impulses in horizontal (H), eastward (Y) and vertical (Z) fields at four Indian geomagnetic observatories between 1958–1992. The midday maximum of ΔH has been shown to exist even at the low-latitude station Alibag which is outside the equatorial electrojet belt, suggesting that SSC is associated with an eastward electric field at equatorial and low latitudes. The impulses in Y field are shown to be linearly and inversely related to ΔH at Annamalainagar and Alibag. The average SC disturbance vector is shown to be about 10–20°W of the geomagnetic meridian. The local time variation of the angle is more westerly during dusk hours in summer and around dawn in the winter months. This clearly suggests an effect of the orientation of shock front plane of the solar plasma with respect to the geomagnetic meridian. The ΔZ at SSC have a positive impulse as in ΔH. The ratio of ΔZ/ΔH are abnormally large exceeding 1.0 in most of the cases at Trivandrum. The latitudinal variation of ΔZ shows a tendency towards a minimum over the equator during the nighttime hours. These effects are explained as (1) resulting from the electromagnetic induction effects due to the equatorial electrojet current in the subsurface conducting layers between India and Sri Lanka, due to channelling of ocean currents through the Palk Strait and (2) due to the concentration of induced currents over extended latitude zones towards the conducting graben between India and Sri Lanka just south of Trivandrum.Key words. Interplanetary physics (interplanetary shocks) · Ionosphere (equatorial ionosphere) · Magnetospheric physics (storms and substorms)


2020 ◽  
Vol 12 (14) ◽  
pp. 2287
Author(s):  
Xiaoyun Wan ◽  
Richard Fiifi Annan ◽  
Shuanggen Jin ◽  
Xiaoqi Gong

The first Chinese altimetry satellite, Haiyang-2A (HY-2A), which was launched in 2011, has provided a large amount of sea surface heights which can be used to derive marine gravity field. This paper derived the vertical deflections and gravity disturbances using HY-2A observations for the major area of the whole Earth’s ocean from 60°S and 60°N. The results showed that the standard deviations (STD) of vertical deflections differences were 1.1 s and 3.5 s for the north component and the east component between HY-2A’s observations and those from EGM2008 and EIGEN-6C4, respectively. This indicates the accuracy of the east component was poorer than that of the north component. In order to clearly demonstrate contribution of HY-2A’s observations to gravity disturbances, reference models and the commonly used remove-restore method were not adopted in this study. Therefore, the results can be seen as ‘pure’ signals from HY-2A. Assuming the values from EGM2008 were the true values, the accuracy of the gravity disturbances was about −1.1 mGal in terms of mean value of the errors and 8.0 mGal in terms of the STD. This shows systematic errors if only HY-2A observations were used. An index of STD showed that the accuracy of HY-2A was close to the theoretical accuracy according to the vertical deflection products. To verify whether the systematic errors of gravity field were from the long wavelengths, the long-wavelength parts of HY-2A’s gravity disturbance with wavelengths larger than 500 km were replaced by those from EGM2008. By comparing with ‘pure’ HY-2A version of gravity disturbance, the accuracy of the new version products was improved largely. The systematic errors no longer existed and the error STD was reduced to 6.1 mGal.


2018 ◽  
Vol 160 ◽  
pp. 07004
Author(s):  
Junbo TIE ◽  
Meiping WU ◽  
Juliang Cao ◽  
Junxiang Lian ◽  
Shaokun Cai ◽  
...  

In recent years, the significant improvement of inertial navigation, leaves the gravity disturbance as the important factor which affects the accuracy of inertial navigation. This paper focus on the compensation for gravity disturbance with gravity spherical harmonic model, especially the optimal degree of gravity spherical harmonic model with which to calculate the gravity disturbance. The effect of gravity disturbance on inertial navigation is analysed based on the amplitude-frequency response characteristics of inertial navigation error differential equation, then the dominantly influential frequency band of gravity disturbance can be found which is the target of compensation. Combination the dominantly influential frequency band with the spatial resolution of the Earth’s gravity spherical harmonic model EGM2008 which is used to calculate the gravity disturbance, the optimal degree can be determined based on an algorithm proposed in this paper. Finally, shipborne inertial navigation experiment confirms the correctness and effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document