Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot

2018 ◽  
Vol 15 (4) ◽  
pp. 1459-1470 ◽  
Author(s):  
Xinyu Wu ◽  
Du-Xin Liu ◽  
Ming Liu ◽  
Chunjie Chen ◽  
Huiwen Guo
2016 ◽  
Vol 852 ◽  
pp. 770-775 ◽  
Author(s):  
P. Karthikeyan ◽  
Gopal Satheesh Kumar ◽  
M. Ajin

Among the problems of major concern faced by the geriatric community the fore most is considered to be: “as we grow older it gets difficult to walk”. As they lose their strength to withstand their weight they become weak to walk on their own. Through this project a design is proposed for an assistive modular lower limb exoskeleton robot to enable aged people to walk on their own. The design is mainly based on the amplification of the pressure applied on the thighs and ankles of the legs and these pressures are used to move the legs of the robot which support the legs of the user. Since the user is capable of generating a minimum pressure on their own the working of the gait pattern is mainly based on the movement of knee and ankle, and so only the knee and the ankle are considered in this design. Another reason is that the major weight of the body acts on the knee and the foot while walking. The working of the robot is mainly based on the layered control algorithm embedded on the microcontroller acting through the sensors and actuators. Pressure sensors are used to measure the applied pressure and electrical actuators are used due to their lesser weight. Based on the experimental results obtained with the working robot the design would be fine-tuned for optimized performance.


Mechatronics ◽  
2021 ◽  
Vol 78 ◽  
pp. 102610
Author(s):  
Jinsong Zhao ◽  
Tao Yang ◽  
Zhilei Ma ◽  
Chifu Yang ◽  
Zhipeng Wang ◽  
...  

2021 ◽  
pp. 107754632110317
Author(s):  
Jin Tian ◽  
Liang Yuan ◽  
Wendong Xiao ◽  
Teng Ran ◽  
Li He

The main objective of this article is to solve the trajectory following problem for lower limb exoskeleton robot by using a novel adaptive robust control method. The uncertainties are considered in lower limb exoskeleton robot system which include initial condition offset, joint resistance, structural vibration, and environmental interferences. They are time-varying and have unknown boundaries. We express the trajectory following problem as a servo constraint problem. In contrast to conventional control methods, Udwadia–Kalaba theory does not make any linearization or approximations. Udwadia–Kalaba theory is adopted to derive the closed-form constrained equation of motion and design the proposed control. We also put forward an adaptive law as a performance index whose type is leakage. The proposed control approach ensures the uniform boundedness and uniform ultimate boundedness of the lower limb exoskeleton robot which are demonstrated via the Lyapunov method. Finally, simulation results have shown the tracking effect of the approach presented in this article.


2021 ◽  
Author(s):  
Muhammad Arsalan ◽  
Muhammad Tufail ◽  
SG Khan ◽  
Syed Humayoon Shah

2018 ◽  
Author(s):  
Munadi ◽  
M. S. Nasir ◽  
M. Ariyanto ◽  
Norman Iskandar ◽  
J. D. Setiawan

2021 ◽  
pp. 91-97
Author(s):  
E. A. Kotov ◽  
◽  
A. D. Druk ◽  
D. N. Klypin ◽  
◽  
...  

The article deals with the solution of the problem of optimizing the characteristics of controlled motion of human lower limb exoskeleton robot for improving medical rehabilitation. The aim of the work is to develop a rehabilitation device capable of providing controlled motion in two planes, as well as maintaining balance without loss of mobility. The design and control system of a rehabilitation trainer designed for performing mechanotherapy of the lower limbs of patients with locomotive disorders are proposed and characterized. The developed system has a number of significant differences from analogues and can be recommended for experimental research on patients with impaired locomotive functions


Sign in / Sign up

Export Citation Format

Share Document