scholarly journals Performing Accurate Joint Kinematics From 3-D In Vivo Image Sequences Through Consensus-Driven Simultaneous Registration

2008 ◽  
Vol 55 (5) ◽  
pp. 1620-1633 ◽  
Author(s):  
J.-J. Jacq ◽  
T. Cresson ◽  
V. Burdin ◽  
C. Roux
Author(s):  
Massoud Akbarshahi ◽  
Justin W. Fernandez ◽  
Anthony Schache ◽  
Richard Baker ◽  
Marcus G. Pandy

The ability to accurately measure joint kinematics in vivo is of critical importance to researchers in the field of biomechanics [1]. Applications range from the quantitative evaluation of different surgical techniques, treatment methods and/or implant designs, to the development of computer-based models capable of simulating normal and pathological musculoskeletal conditions [1,2]. Currently, non-invasive marker-based three dimensional (3D) motion analysis is the most commonly used method for quantitative assessment of normal and pathological locomotion. The accuracy of this technique is influenced by movement of the soft tissues relative to the underlying bones, which causes inaccuracies in the determination of segmental anatomical coordinate systems and tracking of segmental motion. The purpose of this study was to quantify the errors in the measurement of knee-joint kinematics due solely to soft-tissue artifact (STA) in healthy subjects. To facilitate valid inter-subject comparisons of the kinematic data, relevant anatomical coordinate systems were defined using 3D bone models generated from magnetic resonance imaging (MRI).


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Joel L. Lanovaz ◽  
Randy E. Ellis

Knowledge of the behavior and mechanics of a total knee replacement (TKR) in an in vivo environment is key to optimizing the functional outcomes of the implant procedure. Computational modeling has shown to be an important tool for investigating biomechanical variables that are difficult to address experimentally. To assist in examining TKR mechanics, a dynamic finite-element model of a TKR is presented. The objective of the study was to develop and evaluate a model that could simulate full knee motion using a physiologically consistent quadriceps action, without prescribed joint kinematics. The model included tibiofemoral (TFJs) and patellofemoral joints (PFJs), six major ligament bundles and was driven by a uni-axial representation of a quadricep muscle. An initial parameter screening analysis was performed to assess the relative importance of 31 different model parameters. This analysis showed that ligament insertion location and initial ligament strain were significant factors affecting simulated joint kinematics and loading, with the contact friction coefficient playing a lesser role and ligament stiffness having little effect. The model was then used to simulate in vitro experiments utilizing a flexed-knee-stance testing rig. General model performance was assessed by comparing simulation results with experimentally measured kinematics and tibial reaction forces collected from two implanted specimens. The simulations were able to reproduce experimental differences observed between the test specimens and were able to accurately predict trends seen in the tibial reaction loads. The simulated kinematics of the TFJ and PFJ were less consistent when compared with experimental data but still reproduced many trends.


2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Jing-Sheng Li ◽  
Tsung-Yuan Tsai ◽  
Shaobai Wang ◽  
Pingyue Li ◽  
Young-Min Kwon ◽  
...  

Using computed tomography (CT) or magnetic resonance (MR) images to construct 3D knee models has been widely used in biomedical engineering research. Statistical shape modeling (SSM) method is an alternative way to provide a fast, cost-efficient, and subject-specific knee modeling technique. This study was aimed to evaluate the feasibility of using a combined dual-fluoroscopic imaging system (DFIS) and SSM method to investigate in vivo knee kinematics. Three subjects were studied during a treadmill walking. The data were compared with the kinematics obtained using a CT-based modeling technique. Geometric root-mean-square (RMS) errors between the knee models constructed using the SSM and CT-based modeling techniques were 1.16 mm and 1.40 mm for the femur and tibia, respectively. For the kinematics of the knee during the treadmill gait, the SSM model can predict the knee kinematics with RMS errors within 3.3 deg for rotation and within 2.4 mm for translation throughout the stance phase of the gait cycle compared with those obtained using the CT-based knee models. The data indicated that the combined DFIS and SSM technique could be used for quick evaluation of knee joint kinematics.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
David Leandro Dejtiar ◽  
Christine Mary Dzialo ◽  
Peter Heide Pedersen ◽  
Kenneth Krogh Jensen ◽  
Martin Kokholm Fleron ◽  
...  

Abstract Musculoskeletal (MS) models can be used to study the muscle, ligament, and joint mechanics of natural knees. However, models that both capture subject-specific geometry and contain a detailed joint model do not currently exist. This study aims to first develop magnetic resonance image (MRI)-based subject-specific models with a detailed natural knee joint capable of simultaneously estimating in vivo ligament, muscle, tibiofemoral (TF), and patellofemoral (PF) joint contact forces and secondary joint kinematics. Then, to evaluate the models, the predicted secondary joint kinematics were compared to in vivo joint kinematics extracted from biplanar X-ray images (acquired using slot scanning technology) during a quasi-static lunge. To construct the models, bone, ligament, and cartilage structures were segmented from MRI scans of four subjects. The models were then used to simulate lunges based on motion capture and force place data. Accurate estimates of TF secondary joint kinematics and PF translations were found: translations were predicted with a mean difference (MD) and standard error (SE) of 2.13 ± 0.22 mm between all trials and measures, while rotations had a MD ± SE of 8.57 ± 0.63 deg. Ligament and contact forces were also reported. The presented modeling workflow and the resulting knee joint model have potential to aid in the understanding of subject-specific biomechanics and simulating the effects of surgical treatment and/or external devices on functional knee mechanics on an individual level.


Author(s):  
Tracy L. Rausch ◽  
Beth A. Wirick ◽  
Steven J. Stanhope ◽  
Frances T. Sheehan

In order to take advantage of the opportunities that dynamic Magnetic Resonance Imaging (d-MRI) offers to the study of in vivo joint mechanics, d-MRI compatible devices capable of producing joint loads replicating dynamic physiological activities are needed (Sheehan et al., 1999). The purpose of this research effort was to design, model and test a device for the expressed purpose of using d-MRI to study precise ankle joint dynamics during loaded pseudo-functional movements. The device adjusts to subject specific anthropometric measurements, allowing for the device’s axis of rotation to approximate the ankle’s transverse axis. By combining imaging data and the model of the device, the magnitude, direction and point of application of the force applied to the foot were calculated throughout the motion cycle, with an average error of .7 Nm. This allows for comparisons between the externally applied load and internal ankle joint kinematics to be made, which are essential determinants for in vivo estimates of forces within tendon and ligament. The next phase of this work will be to combine this device with fast-Phase Contrast MRI (fast-pc), a previously developed d-MRI technique for the quantification of 3D musculoskeletal motion, in order to create a complete tool for the noninvasive in vivo measurement of joint kinematics during a loaded dynamic functional task in both healthy and impaired ankles.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0041
Author(s):  
Daniel R. Sturnick ◽  
Charles L. Saltzman ◽  
Albert H. Burstein ◽  
Matthew A. Hamilton ◽  
Jonathan T. Deland

Category: Ankle, Ankle Arthritis Introduction/Purpose: Treatment options for ankle arthritis in younger patients are currently limited. Since the longevity of modern total ankle replacements is not sufficient for this patient population, ankle arthrodesis is typically utilized when joint preserving treatment is not a viable option. A new procedure using a pyrocarbon ankle spacer has been developed as a potential alternative, allowing for talar articular resurfacing for pain relief with minimal bone resection. The objective of this study was to assess whether this pyrocarbon ankle spacer could provide normal ankle kinematics as the native ankle joint using cadaveric gait simulation. Methods: Five mid-tibia cadaveric specimens without deformity and no history of lower limb injury or surgery were utilized. The stance phase of gait was simulated for each specimen using a six degree-of-freedom robotic device. A force plate was moved relative to stationary specimen through an inverse tibial kinematic path calculated from in vivo data while extrinsic tendons were actuated using physiologic loads (Figure 1A). Magnitudes of load were scaled to that of 25% bodyweight. Ankle kinematics were measured from reflective markers attached to the tibia and talus via surgical pins. The pyrocarbon ankle spacer (Exactech, Gainesville, FL, USA) was implanted in a nest formed 3-4 mm in depth on the talar articular surface using a custom burring technique (Figure 1B). Ankle spacer kinematics were compared to 95% confidence intervals of native, intact ankle joint kinematics to assess agreement. Results: Outcomes revealed no significant difference in ankle joint kinematics between the native, intact condition and post- pyrocarbon spacer implantation (Figure 1C). This result was consistent for the sagittal, coronal and axial planes of motion. Conclusion: The results of this study demonstrate that a pyrocarbon spacer permits normal ankle kinematics. Further, the device was observed to be stable in the joint throughout simulations. While the testing was performed at 25% bodyweight for analyses on all specimens, load magnitudes were also increased up to 75% on a subset of specimens and the structural integrity of the device remained pristine. With these findings, we concluded that the pyrocarbon spacer device offers promising potential as a treatment option for ankle arthritis.


2019 ◽  
Vol 16 (151) ◽  
pp. 20180678 ◽  
Author(s):  
Pascal Schütz ◽  
Barbara Postolka ◽  
Hans Gerber ◽  
Stephen J. Ferguson ◽  
William R. Taylor ◽  
...  

Although total knee arthroplasty (TKA) has become a standard surgical procedure for relieving pain, knowledge of the in vivo knee joint kinematics throughout common functional activities of daily living is still missing. The goal of this study was to analyse knee joint motion throughout complete cycles of daily activities in TKA subjects to establish whether a significant difference in joint kinematics occurs between different activities. Using dynamic videofluoroscopy, we assessed tibio-femoral kinematics in six subjects throughout complete cycles of walking, stair descent, sit-to-stand and stand-to-sit. The mean range of condylar anterior–posterior translation exhibited clear task dependency across all subjects. A significantly larger anterior–posterior translation was observed during stair descent compared to level walking and stand-to-sit. Local minima were observed at approximately 30° flexion for different tasks, which were more prominent during loaded task phases. This characteristic is likely to correspond to the specific design of the implant. From the data presented in this study, it is clear that the flexion angle alone cannot fully explain tibio-femoral implant kinematics. As a result, it seems that the assessment of complete cycles of the most frequent functional activities is imperative when evaluating the behaviour of a TKA design in vivo .


2019 ◽  
Vol 86 ◽  
pp. 193-203 ◽  
Author(s):  
Karim Makki ◽  
Bhushan Borotikar ◽  
Marc Garetier ◽  
Sylvain Brochard ◽  
Douraied Ben Salem ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document