A Cadaverically Evaluated Dynamic FEM Model of Closed-Chain TKR Mechanics

2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Joel L. Lanovaz ◽  
Randy E. Ellis

Knowledge of the behavior and mechanics of a total knee replacement (TKR) in an in vivo environment is key to optimizing the functional outcomes of the implant procedure. Computational modeling has shown to be an important tool for investigating biomechanical variables that are difficult to address experimentally. To assist in examining TKR mechanics, a dynamic finite-element model of a TKR is presented. The objective of the study was to develop and evaluate a model that could simulate full knee motion using a physiologically consistent quadriceps action, without prescribed joint kinematics. The model included tibiofemoral (TFJs) and patellofemoral joints (PFJs), six major ligament bundles and was driven by a uni-axial representation of a quadricep muscle. An initial parameter screening analysis was performed to assess the relative importance of 31 different model parameters. This analysis showed that ligament insertion location and initial ligament strain were significant factors affecting simulated joint kinematics and loading, with the contact friction coefficient playing a lesser role and ligament stiffness having little effect. The model was then used to simulate in vitro experiments utilizing a flexed-knee-stance testing rig. General model performance was assessed by comparing simulation results with experimentally measured kinematics and tibial reaction forces collected from two implanted specimens. The simulations were able to reproduce experimental differences observed between the test specimens and were able to accurately predict trends seen in the tibial reaction loads. The simulated kinematics of the TFJ and PFJ were less consistent when compared with experimental data but still reproduced many trends.

2021 ◽  
Vol 22 (13) ◽  
pp. 7202
Author(s):  
Tamara Bruna ◽  
Francisca Maldonado-Bravo ◽  
Paul Jara ◽  
Nelson Caro

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


1963 ◽  
Vol 204 (1) ◽  
pp. 171-175 ◽  
Author(s):  
W. S. Ruliffson ◽  
J. M. Hopping

The effects in rats, of age, iron-deficiency anemia, and ascorbic acid, citrate, fluoride, and ethylenediaminetetraacetate (EDTA) on enteric radioiron transport were studied in vitro by an everted gut-sac technique. Sacs from young animals transported more than those from older ones. Proximal jejunal sacs from anemic animals transported more than similar sacs from nonanemic rats, but the reverse effect appeared in sacs formed from proximal duodenum. When added to media containing ascorbic acid or citrate, fluoride depressed transport as did anaerobic incubation in the presence of ascorbic acid. Anaerobic incubation in the presence of EDTA appeared to permit elevated transport. Ascorbic acid, citrate, and EDTA all enhanced the level of Fe59 appearing in serosal media. These results appear to agree with previously established in vivo phenomena and tend to validate the in vitro method as one of promise for further studies of factors affecting iron absorption and of the mechanism of iron absorption.


Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 79-92
Author(s):  
Rosita Smith ◽  
Anne McLaren

In normal mouse embryos developing in vivo, the first appearance of the blastocyst cavity was found to be associated more closely with developmental age, judged by cell number, than with chronological age, i.e. elapsed time since ovulation. When development was slowed by in vitro culture, formation of the blastocoele was delayed. However, cell number itself was not a critical factor, since the number of cells per embryo could be doubled or tripled or halved by experimental manipulation without substantially affecting the timing of blastocoele formation. Experiments in which one cell division was suppressed with cytochalasin-B, leading to tetraploidy, showed that the number of cell divisions since fertilization was also not critical. A possible role is suggested either for nucleocytoplasmic ratio, or for the number of nuclear or chromosomal divisions or DNA replications since fertilization, all of which increase during cleavage.


Ultrasound ◽  
2020 ◽  
pp. 1742271X2095319
Author(s):  
Stephanie F Smith ◽  
Piero Miloro ◽  
Richard Axell ◽  
Gail ter Haar ◽  
Christoph Lees

Introduction The quantification of heating effects during exposure to ultrasound is usually based on laboratory experiments in water and is assessed using extrapolated parameters such as the thermal index. In our study, we have measured the temperature increase directly in a simulator of the maternal–fetal environment, the ‘ISUOG Phantom’, using clinically relevant ultrasound scanners, transducers and exposure conditions. Methods The study was carried out using an instrumented phantom designed to represent the pregnant maternal abdomen and which enabled temperature recordings at positions in tissue mimics which represented the skin surface, sub-surface, amniotic fluid and fetal bone interface. We tested four different transducers on a commercial diagnostic scanner. The effects of scan duration, presence of a circulating fluid, pre-set and power were recorded. Results The highest temperature increase was always at the transducer–skin interface, where temperature increases between 1.4°C and 9.5°C were observed; lower temperature rises, between 0.1°C and 1.0°C, were observed deeper in tissue and at the bone interface. Doppler modes generated the highest temperature increases. Most of the heating occurred in the first 3 minutes of exposure, with the presence of a circulating fluid having a limited effect. The power setting affected the maximum temperature increase proportionally, with peak temperature increasing from 4.3°C to 6.7°C when power was increased from 63% to 100%. Conclusions Although this phantom provides a crude mimic of the in vivo conditions, the overall results showed good repeatability and agreement with previously published experiments. All studies showed that the temperature rises observed fell within the recommendations of international regulatory bodies. However, it is important that the operator should be aware of factors affecting the temperature increase.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Lyle T. Jackson ◽  
Patrick M. Aubin ◽  
Matthew S. Cowley ◽  
Bruce J. Sangeorzan ◽  
William R. Ledoux

The symptomatic flatfoot deformity (pes planus with peri-talar subluxation) can be a debilitating condition. Cadaveric flatfoot models have been employed to study the etiology of the deformity, as well as invasive and noninvasive surgical treatment strategies, by evaluating bone positions. Prior cadaveric flatfoot simulators, however, have not leveraged industrial robotic technologies, which provide several advantages as compared with the previously developed custom fabricated devices. Utilizing a robotic device allows the researcher to experimentally evaluate the flatfoot model at many static instants in the gait cycle, compared with most studies, which model only one to a maximum of three instances. Furthermore, the cadaveric tibia can be statically positioned with more degrees of freedom and with a greater accuracy, and then a custom device typically allows. We created a six degree of freedom robotic cadaveric simulator and used it with a flatfoot model to quantify static bone positions at ten discrete instants over the stance phase of gait. In vivo tibial gait kinematics and ground reaction forces were averaged from ten flatfoot subjects. A fresh frozen cadaveric lower limb was dissected and mounted in the robotic gait simulator (RGS). Biomechanically realistic extrinsic tendon forces, tibial kinematics, and vertical ground reaction forces were applied to the limb. In vitro bone angular position of the tibia, calcaneus, talus, navicular, medial cuneiform, and first metatarsal were recorded between 0% and 90% of stance phase at discrete 10% increments using a retroreflective six-camera motion analysis system. The foot was conditioned flat through ligament attenuation and axial cyclic loading. Post-flat testing was repeated to study the pes planus deformity. Comparison was then made between the pre-flat and post-flat conditions. The RGS was able to recreate ten gait positions of the in vivo pes planus subjects in static increments. The in vitro vertical ground reaction force was within ±1 standard deviation (SD) of the in vivo data. The in vitro sagittal, coronal, and transverse plane tibial kinematics were almost entirely within ±1 SD of the in vivo data. The model showed changes consistent with the flexible flatfoot pathology including the collapse of the medial arch and abduction of the forefoot, despite unexpected hindfoot inversion. Unlike previous static flatfoot models that use simplified tibial degrees of freedom to characterize only the midpoint of the stance phase or at most three gait positions, our simulator represented the stance phase of gait with ten discrete positions and with six tibial degrees of freedom. This system has the potential to replicate foot function to permit both noninvasive and surgical treatment evaluations throughout the stance phase of gait, perhaps eliciting unknown advantages or disadvantages of these treatments at other points in the gait cycle.


1992 ◽  
Vol 263 (6) ◽  
pp. E1131-E1133
Author(s):  
A. Zeidler ◽  
P. Edwards ◽  
J. Goldman ◽  
S. Kort ◽  
W. P. Meehan ◽  
...  

The strain of athymic nude male mice (ANM) developed at the University of Southern California (USC) exhibits spontaneous hyperglycemia and relative hypoinsulinemia in vivo. To investigate factors that influence insulin secretion in this animal model of non-insulin-dependent diabetes mellitus, we utilized the isolated perfused mouse pancreas of the ANM-USC and control BALB/c mice. We compared in vitro glucose-induced insulin secretion in ANM-USC and control mice, inhibition of secretion by somatostatin, and variability of insulin secretion over the two-year period it took to complete these experiments. Glucose-induced insulin secretion from the isolated pancreas was biphasic in both ANM-USC and controls. Insulin secretion was quantitatively equal to or greater than control mice, depending on the phase of secretion analyzed and the source of the control mice. In contrast to pancreases of control mice, insulin secretion from ANM-USC pancreases was relatively resistant to inhibition of insulin secretion by somatostatin. Variability in insulin secretion over the two years in which these experiments were performed was greater from pancreases of control than that observed from pancreases of the ANM-USC. The hyperglycemic ANM-USC mouse does not demonstrate diminished insulin secretion in vitro yet is relatively hypoinsulinemic in vivo. Thus circulating factors other than somatostatin might contribute to the insulinopenic stage in this animal model.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Christopher Noble ◽  
Joshua Choe ◽  
Susheil Uthamaraj ◽  
Milton Deherrera ◽  
Amir Lerman ◽  
...  

Commercially available heart valves have many limitations, such as a lack of remodeling, risk of calcification, and thromboembolic problems. Many state-of-the-art tissue-engineered heart valves (TEHV) rely on recellularization to allow remodeling and transition to mechanical behavior of native tissues. Current in vitro testing is insufficient in characterizing a soon-to-be living valve due to this change in mechanical response; thus, it is imperative to understand the performance of an in situ valve. However, due to the complex in vivo environment, this is difficult to accomplish. Finite element (FE) analysis has become a standard tool for modeling mechanical behavior of heart valves; yet, research to date has mostly focused on commercial valves. The purpose of this study has been to evaluate the mechanical behavior of a TEHV material before and after 6 months of implantation in a rat subdermis model. This model allows the recellularization and remodeling potential of the material to be assessed via a simple and inexpensive means prior to more complex ovine orthotropic studies. Biaxial testing was utilized to evaluate the mechanical properties, and subsequently, constitutive model parameters were fit to the data to allow mechanical performance to be evaluated via FE analysis of a full cardiac cycle. Maximum principal stresses and strains from the leaflets and commissures were then analyzed. The results of this study demonstrate that the explanted tissues had reduced mechanical strength compared to the implants but were similar to the native tissues. For the FE models, this trend was continued with similar mechanical behavior in explant and native tissue groups and less compliant behavior in implant tissues. Histology demonstrated recellularization and remodeling although remodeled collagen had no clear directionality. In conclusion, we observed successful recellularization and remodeling of the tissue giving confidence to our TEHV material; however, the mechanical response indicates the additional remodeling would likely occur in the aortic/pulmonary position.


Author(s):  
Reyon Dcunha ◽  
Reda S. Hussein ◽  
Hanumappa Ananda ◽  
Sandhya Kumari ◽  
Satish Kumar Adiga ◽  
...  

AbstractSpermatozoon is a motile cell with a special ability to travel through the woman’s reproductive tract and fertilize an oocyte. To reach and penetrate the oocyte, spermatozoa should possess progressive motility. Therefore, motility is an important parameter during both natural and assisted conception. The global trend of progressive reduction in the number and motility of healthy spermatozoa in the ejaculate is associated with increased risk of infertility. Therefore, developing approaches for maintaining or enhancing human sperm motility has been an important area of investigation. In this review we discuss the physiology of sperm, molecular pathways regulating sperm motility, risk factors affecting sperm motility, and the role of sperm motility in fertility outcomes. In addition, we discuss various pharmacological agents and biomolecules that can enhance sperm motility in vitro and in vivo conditions to improve assisted reproductive technology (ART) outcomes. This article opens dialogs to help toxicologists, clinicians, andrologists, and embryologists in understanding the mechanism of factors influencing sperm motility and various management strategies to improve treatment outcomes.


Sign in / Sign up

Export Citation Format

Share Document