scholarly journals First-Order Induced Current Density Imaging and Electrical Properties Tomography in MRI

2018 ◽  
Vol 4 (4) ◽  
pp. 624-631 ◽  
Author(s):  
Patrick S. Fuchs ◽  
Stefano Mandija ◽  
Peter R. S. Stijnman ◽  
Wyger M. Brink ◽  
Cornelis A. T. van den Berg ◽  
...  
2020 ◽  
Vol 1 (4) ◽  
Author(s):  
Peizeng Yang ◽  
Yaye Wang ◽  
Junhe Lu ◽  
Viktor Tishchenko ◽  
Qingguo Huang ◽  
...  

This study examined the degradation of perfluorooctanesulfonate (PFOS) in electrochemical oxidation (EO) processes in the presence of trichloroethylene (TCE). The EO experiment was performed in a gas-tight reactor using Magnéli phase titanium suboxide (Ti4O7) as the anode. The experimental data demonstrated that 75% of PFOS (2 μM) was degraded at 10 mA/cm2 current density in 30 min without TCE present in the solution, while the presence of 76 μM TCE apparently inhibited the degradation of PFOS, reducing its removal down to 53%. Defluorination ratio suggested that PFOS was significantly mineralized upon EO treatment, and it appeared to be not influenced by the presence of TCE. The respective pseudo-first order rate constants (kobs) of PFOS removal were 0.0471 and 0.0254 min-1 in the absence and presence of TCE. The degradation rates of both PFOS and TCE increased with current density rising from 2.5 to 20 mA/cm2. In the presence of TCE, chloride, chlorate, and perchlorate were formed that accounted for 79.7 %, 5.53%, and 1.51% of the total chlorine at 60 min. This work illustrates the promise of the Magnéli phase Ti4O7 electrode based electrochemical oxidation technology for degrading per- and polyfluoroalkyl substances (PFASs) and co-contaminants in groundwaters.


2021 ◽  
Author(s):  
Mohammadali Beheshti

Electro-mechanical disorders in cardiac function result in arrhythmias. Due to the non-stationary nature of these arrhythmias and, owing to lethality associated with certain type of arrhythmias, they are challenging to study. Most of the existing studies are limited in that they extract electrical activity from surface intracardiac electrical activity, either through the use of electrical or optical mapping. One way of studying current pathways inside and through biological tissues is by using Magnetic Resonance Imaging (MRI) based Low Frequency Current Density Imaging (LFCDI). For the first time CDI was used to study ex-vivo beating hearts in different cardiac states. It should be said that; this approach involves heavy logistical and procedural complexity, hence, it would be beneficial to adapt existing electrophysiological computer models to investigate and simulate current density maps specific to studying cardiac function. In achieving this, the proposed work presents an approach to model the current density maps in 3D and study the current distributions in different electrophysiological states of the heart. The structural and fiber orientation of the heart used in this study were extracted using MRI-based Diffusion Tensor Imaging. The monodomain and bidomain Aliev-Panfilov electrophysiological models were used for CDI modeling, and the results indicate that different states were distinguishable using range and correlation of simulated current density maps. The obtained results through modeling were corroborated with actual experimental CDI data from porcine hearts. Individually and comparatively, the experimental and simulation results for various states have the same trend in terms of variations (trend correlation coefficients ≥ 0.98) and state correlations (trend correlation coefficients ≥ 0.89). The results also show that the root mean square (RMS) error in average range ratios between bidomain CDI model results and real CDI data is 0.1972 and the RMS error in state correlations between bidomain CDI model results and real CDI data is 0.2833. These results indicate, as expected, the proposed bidomain model simulation of CDI corroborates well with experimental data and can serve as a valuable tool for studying lethal cardiac arrhythmias under different simulation conditions that are otherwise not possible or difficult in a real-world experimental setup.


2019 ◽  
Vol 8 (4) ◽  
pp. 2713-2718

In the present, varistor ceramics through the combination of zinc oxide (ZnO) with a perovskite material have become widespread because of their unique properties for a wide range of applications in electronic protection devices. Low-voltage zinc oxide (ZnO) varistors with fast response and highly nonlinear electrical properties for overvoltage protection in an integrated circuit are increasingly significant in the application of low-voltage electronics. The present study highlights the interaction between barium titanate (BaTiO3 ) and ZnO varistors through the employment of solid-state reaction method in the production of low-voltage varistors. The effects of BaTiO3 on the microstructure of ZnO varistors were analyzed through scanning electron microscopy (SEM), energy dispersive X-ray analysis spectroscopy (EDS) and X-ray diffraction (XRD). The EDS analysis and XRD measurements suggest the presence of ZnO and BaTiO3 phases. The electrical properties of BaTiO3 -doped ZnO varistors were examined based on the current density-electric field (J-E) characteristics measurement. The varistor properties showed the nonlinear coefficient (α) from 1.8 to 4.8 with the barrier height (φB) ranged from 0.70 to 0.88 eV. The used of BaTiO3 additive in ZnO varistors produced varistor voltages of 4.7 to 14.1 V/mm with the voltage per grain boundary (Vgb) was measured in the ranges 0.03 to 0.05 V. The lowest leakage current density was 348 µA/cm2 , obtained at the samples containing 12 wt.% BaTiO3 with high barrier height. The reduction in barrier height with increasing BaTiO3 content was associated with the excessive amount of BaTiO3 phase, hence cause the deterioration of active grain boundary due to the variation of oxygen (O) vacancies in the grain boundary.


Author(s):  
Hao Peng ◽  
Yumeng Leng ◽  
Jing Guo

Removal of hexavalent chromium had attracted much more attention as it was a hazardous contaminant. Electrochemical reduction technology was applied to removal chromium (VI) from wastewater. The mechanism and parameters affect the reduction process were investigated. The results showed that the reduction efficiency was significantly affected by the concentration of H2SO4, current density and reaction temperature. And the reduction efficiency was up to 86.45% at concentration of H2SO4 of 100g/L, reaction temperature of 70 ℃, current density at 50 A/m2, reaction time at 180 min and stirring rate of 500 rpm. The reduction process of chromium (VI) was followed pseudo-first-order equation, and the reduction rate could be expressed as Kobs = k [H2SO4]1• [j] 4•exp-4170/RT.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012028
Author(s):  
G. H. Jihad ◽  
K.A. Aadim

Abstract Fabrication of PSi is generated successfully depending upon photo-electrochemical etching process. The purpose is to differentiate the characterization of the PSi monolayer based on c-silicon solar cell compared to the bulk silicon alone. The surface of ordinary p-n solar cell has been reconstructed on the n-type region of (100) orientation with resistivity (3.2.cm) in hydrofluoric (HF) acid at a concentration of 2 ml was used to in order to enhance the conversion efficiency with 10-minute etching time and current density of 50 mA/cm2, The morphological properties (AFM) as well as the electrical properties have been investigated (J-V). The atomic force microscopy investigation reveals a rugged silicon surface with porous structure nucleating during the etching process (etching time), resulting in an expansion in depth and an average diameter of (40.1 nm). As a result, the surface roughness increases. The electrical properties of prepared PS, namely current density-voltage characteristics in the dark, reveal that porous silicon has a sponge-like structure and that the pore diameter increases with increasing etching current density and the number of shots increasing this led that the solar cell efficiency was in the range of (1-2%), resulting in improved solar cell performance.


2021 ◽  
Author(s):  
Mohammadali Beheshti

Electro-mechanical disorders in cardiac function result in arrhythmias. Due to the non-stationary nature of these arrhythmias and, owing to lethality associated with certain type of arrhythmias, they are challenging to study. Most of the existing studies are limited in that they extract electrical activity from surface intracardiac electrical activity, either through the use of electrical or optical mapping. One way of studying current pathways inside and through biological tissues is by using Magnetic Resonance Imaging (MRI) based Low Frequency Current Density Imaging (LFCDI). For the first time CDI was used to study ex-vivo beating hearts in different cardiac states. It should be said that; this approach involves heavy logistical and procedural complexity, hence, it would be beneficial to adapt existing electrophysiological computer models to investigate and simulate current density maps specific to studying cardiac function. In achieving this, the proposed work presents an approach to model the current density maps in 3D and study the current distributions in different electrophysiological states of the heart. The structural and fiber orientation of the heart used in this study were extracted using MRI-based Diffusion Tensor Imaging. The monodomain and bidomain Aliev-Panfilov electrophysiological models were used for CDI modeling, and the results indicate that different states were distinguishable using range and correlation of simulated current density maps. The obtained results through modeling were corroborated with actual experimental CDI data from porcine hearts. Individually and comparatively, the experimental and simulation results for various states have the same trend in terms of variations (trend correlation coefficients ≥ 0.98) and state correlations (trend correlation coefficients ≥ 0.89). The results also show that the root mean square (RMS) error in average range ratios between bidomain CDI model results and real CDI data is 0.1972 and the RMS error in state correlations between bidomain CDI model results and real CDI data is 0.2833. These results indicate, as expected, the proposed bidomain model simulation of CDI corroborates well with experimental data and can serve as a valuable tool for studying lethal cardiac arrhythmias under different simulation conditions that are otherwise not possible or difficult in a real-world experimental setup.


2012 ◽  
Vol 106 ◽  
pp. 76-79 ◽  
Author(s):  
Jens Müller ◽  
Karsten Bothe ◽  
Sandra Herlufsen ◽  
Helge Hannebauer ◽  
Rafel Ferré ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document