scholarly journals Fabrication of (ZnO)x: (Cu)1-x/PSi Solar Cell Using Laser Induced Plasma Technique

2021 ◽  
Vol 2114 (1) ◽  
pp. 012028
Author(s):  
G. H. Jihad ◽  
K.A. Aadim

Abstract Fabrication of PSi is generated successfully depending upon photo-electrochemical etching process. The purpose is to differentiate the characterization of the PSi monolayer based on c-silicon solar cell compared to the bulk silicon alone. The surface of ordinary p-n solar cell has been reconstructed on the n-type region of (100) orientation with resistivity (3.2.cm) in hydrofluoric (HF) acid at a concentration of 2 ml was used to in order to enhance the conversion efficiency with 10-minute etching time and current density of 50 mA/cm2, The morphological properties (AFM) as well as the electrical properties have been investigated (J-V). The atomic force microscopy investigation reveals a rugged silicon surface with porous structure nucleating during the etching process (etching time), resulting in an expansion in depth and an average diameter of (40.1 nm). As a result, the surface roughness increases. The electrical properties of prepared PS, namely current density-voltage characteristics in the dark, reveal that porous silicon has a sponge-like structure and that the pore diameter increases with increasing etching current density and the number of shots increasing this led that the solar cell efficiency was in the range of (1-2%), resulting in improved solar cell performance.

Author(s):  
Wasna'a M. Abdulridha ◽  
Raheem G. Kadhim ◽  
Raid A. Ismail

In this paper, porous silicon layer prepared by electrochemical etching process of (100) p-type silicon wafer at different current densities (9, 11, 14 and 16)mA/cm² for 15min etching time. The structural and morphological properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM),energy dispersive X-ray (EDX), atomic force microscopy (AFM), fourier transformation infrared spectroscopy (FTIR) and photoluminescence (PL). XRD investigation exhibited that all the layers were monocrystalline structure with preferred orientation (211). AFM investigation indicates that PSi layer sponge like structure, and average diameter of pore increased with increasing current density, our result showed a PSi structure with porosity of (34.19-75.36%). From FTIR analysis, it has been show that the Si dangling bonds of the prepared PSi layer have large amount of Hydrogen to form (Si-H) bond. Increasing the current density from (9-16mA/cm²)leads to shift the photoluminescence peak position from (1.63-1.66eV).


Author(s):  
Hasan A. Hadi

This paper reports the influence of the etching time on structural characteristics of porous silicon manufactured by electrochemical etching (ECE) anodization p-type silicon wafers. Micro and nano-structural features of the samples are mainly investigated by XRD and AFM techniques. The morphological properties of PS layer such as nano-crystalline size, the structure aspect of PS layer and lattice constant have been investigated. Nanocrystals size (grain size) computing from XRD data (145 to 85) nm is resulting the increasing etching time.AFM investigations reveal increase in (RMS) roughness, Sz.(Ten Point height) and average diameter of the porous structure with increase in etching time.


2020 ◽  
pp. 114-119

Experimental and theoretical study Porphyrin-grafted ZnO nanowire arrays were investigated for organic/inorganic hybrid solar cell applications. Two types of porphyrin – Tetra (4-carboxyphenyle) TCPP and meso-Tetraphenylporphine (Zinc-TPP)were used to modify the nanowire surfaces. The vertically aligned nanowires with porphyrin modifications were embedded in graphene-enriched poly (3-hexylthiophene) [G-P3HT] for p-n junction nanowire solar cells. Surface grafting of ZnO nanowires was found to improve the solar cell efficiency. There are different effect for the two types of porphyrin as results of Zn existing. Annealing effects on the solar cell performance were investigated by heating the devices up to 225 °C in air. It was found that the cell performance was significantly degraded after annealing. The degradation was attributed to the polymer structural change at high temperature as evidenced by electrochemical impedance spectroscopy measurements.


2007 ◽  
Vol 989 ◽  
Author(s):  
Ivan Gordon ◽  
Lode Carnel ◽  
Dries Van Gestel ◽  
Guy Beaucarne ◽  
Jef Poortmans

AbstractEfficient thin-film polycrystalline-silicon (pc-Si) solar cells on inexpensive substrates could lower the price of photovoltaic electricity substantially. At the MRS conference in 2006, we presented a pc-Si solar cell with an efficiency of 5.9% that had an absorber layer made by aluminum-induced crystallization (AIC) of amorphous silicon followed by high-temperature epitaxial thickening. The efficiency of this cell was mainly limited by the current density. To obtain higher efficiencies, we therefore need to implement an effective light trapping scheme in our pc-Si solar cell process. In this work, we describe how we recently enhanced the current density and efficiency of our cells. We achieved a cell efficiency of 8.0% for pc-Si cells in substrate configuration. Our cell process is based on pc-Si layers made by AIC and thermal CVD on smoothened alumina substrates. The cells are in substrate configuration with deposited a-Si heterojunction emitters and interdigitated top contacts. The front surface of the cells is plasma textured which leads to an increase in current density. The current density is further enhanced by minimizing the back surface field thickness of the cells to reduce the light loss in this layer. Our present pc-Si solar cell efficiency together with the fast progression that we have made over the last few years indicate the large potential of pc-Si solar cells based on the AIC seed layer approach.


2019 ◽  
Vol 7 (2) ◽  
pp. 24
Author(s):  
Marjoni Imamora Ali Umar

The study on the optical, electrical properties of multilayer graphene (MLG) obtained by thermal-reduction of graphene oxide (GrO) which was synthesized directly by mixing graphite oxide (GO) flake in 0.005, 0.01, 0.015, and 0.02 M of Au aqueous solution has been successfully performed. The resultant  GrO was subjected to an annealing temperature of 200°C, 400°C, 500°C for 1h to obtain MLG, and G-Au2x, G-Au4x, and G-Au5x (x=.0.005, 0.01, 0.015, and 0.02). The resultant samples were then characterized using FESEM, UV-VIS, four-point probe measurements to study its morphology, optical, and electrical properties. The transmission G-Au increase and its sheet resistant decrease as an increase of annealing temperature. Besides, the annealing treatment was then achieved of its microstructure which is expected may be used as a counter electrode in solar cell applications. The best DSSC devices with Quartz/FTO/ZnO Nanorods/Dye/G-Au50.01/Quartz structures have resulted in current-density, Voc, and solar cell performance of 0.1 mA/cm2, 0.42 V, and 0.01%, respectively.


2009 ◽  
Vol 105 (4) ◽  
pp. 044909 ◽  
Author(s):  
Kentaro Kutsukake ◽  
Noritaka Usami ◽  
Tsuyoshi Ohtaniuchi ◽  
Kozo Fujiwara ◽  
Kazuo Nakajima

Sign in / Sign up

Export Citation Format

Share Document