scholarly journals Microstructure and Electrical Properties of Low-Voltage Barium Titanate Doped Zinc Oxide Varistor Ceramics

2019 ◽  
Vol 8 (4) ◽  
pp. 2713-2718

In the present, varistor ceramics through the combination of zinc oxide (ZnO) with a perovskite material have become widespread because of their unique properties for a wide range of applications in electronic protection devices. Low-voltage zinc oxide (ZnO) varistors with fast response and highly nonlinear electrical properties for overvoltage protection in an integrated circuit are increasingly significant in the application of low-voltage electronics. The present study highlights the interaction between barium titanate (BaTiO3 ) and ZnO varistors through the employment of solid-state reaction method in the production of low-voltage varistors. The effects of BaTiO3 on the microstructure of ZnO varistors were analyzed through scanning electron microscopy (SEM), energy dispersive X-ray analysis spectroscopy (EDS) and X-ray diffraction (XRD). The EDS analysis and XRD measurements suggest the presence of ZnO and BaTiO3 phases. The electrical properties of BaTiO3 -doped ZnO varistors were examined based on the current density-electric field (J-E) characteristics measurement. The varistor properties showed the nonlinear coefficient (α) from 1.8 to 4.8 with the barrier height (φB) ranged from 0.70 to 0.88 eV. The used of BaTiO3 additive in ZnO varistors produced varistor voltages of 4.7 to 14.1 V/mm with the voltage per grain boundary (Vgb) was measured in the ranges 0.03 to 0.05 V. The lowest leakage current density was 348 µA/cm2 , obtained at the samples containing 12 wt.% BaTiO3 with high barrier height. The reduction in barrier height with increasing BaTiO3 content was associated with the excessive amount of BaTiO3 phase, hence cause the deterioration of active grain boundary due to the variation of oxygen (O) vacancies in the grain boundary.

2021 ◽  
Vol 55 (13) ◽  
pp. 135106
Author(s):  
Xia Zhao ◽  
Men Guo ◽  
Yuandong Wen ◽  
Weidong Shi ◽  
Boyu Zhang ◽  
...  

Abstract The defect distributions in ZnO varistors mixed with Bi2O3, NiO, MnCO3, Co2O3, and SiO2 after doping Sb2O3 were investigated, based on the Jonscher’s universal power law and the Dissado–Hill model. The microstructures were investigated using x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, and x-ray photoelectron spectrometer. The capacitance–voltage (C–V) method was utilized to obtain the parameters of the double Schottky barrier. The dielectric spectra were analyzed to extract the parameters of defect distribution. The current density–electric field (J–E) characteristics were measured to obtain the parameters of electrical properties. We found that with increasing Sb2O3 content, the ZnO grain size distribution become more homogeneous in the Sb2O3-doped ZnO varistors; the density Zn i × is decreased; except for less homogeneous V O × , more homogeneous distributions of Zn i ∙ in the depletion layers and the extrinsic defects at the interfaces are achieved in the Sb2O3-doped ZnO varistors. Therefore, the enhancement in the electrical properties was achieved by doping Sb2O3 due to the increased number of active grain boundaries per unit volume, i.e. the increased breakdown field and nonlinear coefficient, and the decreased leakage current density. The results of this study suggest that the Jonscher’s universal power law and the Dissado–Hill model can be effectively used to analyze defect distributions in varistor ceramics.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3294
Author(s):  
Jakkree Boonlakhorn ◽  
Jedsada Manyam ◽  
Pornjuk Srepusharawoot ◽  
Sriprajak Krongsuk ◽  
Prasit Thongbai

The effects of charge compensation on dielectric and electrical properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics (x = 0−0.05) prepared by a solid-state reaction method were studied based on the configuration of defect dipoles. A single phase of CaCu3Ti4O12 was observed in all ceramics with a slight change in lattice parameters. The mean grain size of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics was slightly smaller than that of the undoped ceramic. The dielectric loss tangent can be reduced by a factor of 13 (tanδ ~0.017), while the dielectric permittivity was higher than 104 over a wide frequency range. Impedance spectroscopy showed that the significant decrease in tanδ was attributed to the highly increased resistance of the grain boundary by two orders of magnitude. The DFT calculation showed that the preferential sites of Al and Nb/Ta were closed together in the Ti sites, forming self-charge compensation, and resulting in the enhanced potential barrier height at the grain boundary. Therefore, the improved dielectric properties of CaCu3Ti4-x(Al1/2Ta1/4Nb1/4)xO12 ceramics associated with the enhanced electrical properties of grain boundaries. In addition, the non-Ohmic properties were also improved. Characterization of the grain boundaries under a DC bias showed the reduction of potential barrier height at the grain boundary. The overall results indicated that the origin of the colossal dielectric properties was caused by the internal barrier layer capacitor structure, in which the Schottky barriers at the grain boundaries were formed.


2011 ◽  
Vol 343-344 ◽  
pp. 160-165 ◽  
Author(s):  
Ji Wei Fan ◽  
Xiao Peng Li ◽  
Zhen Guo Zhang ◽  
Zhi Qiang Jiao ◽  
Xiang Yang Liu ◽  
...  

The doping effects of Cu on the microstructure and non-ohmic electrical properties of ZnO varistors were studied. Addition of Cu2O can enhance the ZnO grain growth during sintering. The SEM and EDS results revealed that the added Cu mainly distributed in the grain boundary and spinel phases of ZnO varistors. The Cu2O addition increased the both of grain and grain boundary resistances. However it decreased the non-ohmic electrical characteristics of ZnO varistors, which is a good agreement with similar findings on Ag2O additions, but contrasts to the reports of good non-ohmic electrical property which found on binary Cu doped ZnO varistors.


2014 ◽  
Vol 681 ◽  
pp. 173-176
Author(s):  
Ji Wei Fan ◽  
Hui Jun Zhao ◽  
Xiao Li Zhang

The Cu2O addition deteriorates the electrical properties of ZnO varistors, which is a good agreement with similar findings on Ag2O additions. The best fitted impedance analysis reveals that the Cu2O addition increases grain resistance and lowers the grain boundary resistance, results in low nonlinearity and higher leakage current of ZnO varistors.


2010 ◽  
Vol 152-153 ◽  
pp. 1391-1394
Author(s):  
Mao Hua Wang ◽  
Gang Li ◽  
Chao Yao

(Ti,Sn)O2 varistors doped with different amount of La2O3 were obtained by ceramic sintering processing at 1250 . The effect of La2O3 on the microstructure and nonlinear electrical behavior of the (Ti,Sn)O2 ceramics were investigated. The ceramics have nonlinear coefficients of α=6.2–8.5. Experimental evidence shows that small quantities of La2O3 improve the nonlinear properties of the samples significantly. It was found that an optimal doping composition of 1.0mol% La2O3 leads to a low breakdown voltage of 18.1V/mm, a high nonlinear coefficient of 8.5, which is consistent with the highest and narrowest grain boundary barriers of the ceramics.In view of these electrical characteristics, the (Ti,Sn)O2 varistors with 1.0mol% La2O3 ceramic is a viable candidate for low voltage varistor devices. The characteristics of the ceramics can be explained by the effect of the substitution of La3+ for Ti4+ or Sn4+.


1995 ◽  
Vol 411 ◽  
Author(s):  
T. D. Chen ◽  
J.-R. Lee ◽  
H. L. Tuller ◽  
Y.-M. Chiang

ABSTRACTSimplified varistor systems of bismuth- and cobalt-doped zinc oxide are studied. A prior study has shown that the distributions of bismuth segregation at the grain boundaries in such samples can be controlled by varying microstructure and heat treatment. Current-voltage and deep level transient spectroscopy measurements were done to evaluate the corresponding electrical properties. Low leakage and α values of ˜30 were attained, despite the nominal, twocomponent doping of these simplified varistors. Moreover, these samples show the signature defects that are found in many multi-dopant, commercial devices: two shallow bulk traps at ˜0.14 eV and ˜0.24 eV and one prominent interfacial trap at ˜1 eV.


2013 ◽  
Vol 582 ◽  
pp. 218-221
Author(s):  
Atsuko Kubota ◽  
Yuuki Sato ◽  
Shinzo Yoshikado

In order to fabricate varistors with low varistor voltage, the effects of thermal annealing of CoMnBaSi-added Bi based ZnO varistors on electrical properties and the grain boundary structure were investigated. The varistor voltage for the BiCoMnBaSi-added ZnO varistor decreased in half by thermal annealing for a short time. The resistance to electrical degradation was most improved by the addition of SiO2and thermal annealing for 1020 min. It is suggested that the composition of Bi and Si in the sheet-like deposit is changed by varying the annealing time and the resistance to electrical degradation is improved by both addition of SiO2as well as thermal annealing for short time.


NANO ◽  
2014 ◽  
Vol 09 (06) ◽  
pp. 1450062 ◽  
Author(s):  
N. PADMA ◽  
MANORANJAN GHOSH ◽  
SHASHWATI SEN ◽  
R. TEWARI

Nanocomposites of n-type Zinc Oxide ( ZnO ) and p-type copper phthalocyanine ( CuPc ) were synthesized using solution route and the electrical properties of heterojunctions of ZnO and CuPc in the nanocomposite film was studied. For comparison, electrical properties of bilayer heterojunction devices using ZnO nanostructure drop cast film and thermally evaporated CuPc were also studied. Rectification ratio (RR) of about 28 and 5.5 was obtained at 4 V for devices with nanocomposite film and bilayer heterojunctions indicating improved formation of p–n junction characteristics for nanocomposite films. Values of ideality factor, barrier height at the p–n junction interface and series resistance were estimated using different methods like semilog plots, Cheung and Norde's methods. Ideality factor estimated from semilog plots and Cheung's methods were found to be higher than unity indicating deviation from ideal diode behavior. Barrier height estimated from different methods was about 0.7 eV. Series resistance measured using Cheung and Norde's methods were found to be about 92 KΩ and 21 KΩ, respectively. Bilayer heterojunction devices exhibited much higher series resistance, ideality factor and barrier height as estimated using all the above-mentioned methods as compared to the devices with nanocomposite film. The above results indicate intimate mixing and improved interface between ZnO and CuPc in the in situ synthesized nanocomposite film thereby offering improved p–n junction characteristics.


Sign in / Sign up

Export Citation Format

Share Document