On Base Station Coordination in Cache- and Energy Harvesting-Enabled HetNets: A Stochastic Geometry Study

2018 ◽  
Vol 66 (7) ◽  
pp. 3079-3091 ◽  
Author(s):  
Huici Wu ◽  
Xiaofeng Tao ◽  
Ning Zhang ◽  
Danyang Wang ◽  
Shan Zhang ◽  
...  
Author(s):  
Kui Xu ◽  
Ming Zhang ◽  
Jie Liu ◽  
Nan Sha ◽  
Wei Xie ◽  
...  

Abstract In this paper, we design the simultaneous wireless information and power transfer (SWIPT) protocol for massive multi-input multi-output (mMIMO) system with non-linear energy-harvesting (EH) terminals. In this system, the base station (BS) serves a set of uplink fixed half-duplex (HD) terminals with non-linear energy harvester. Considering the non-linearity of practical energy-harvesting circuits, we adopt the realistic non-linear EH model rather than the idealistic linear EH model. The proposed SWIPT protocol can be divided into two phases. The first phase is designed for terminals EH and downlink training. A beam domain energy beamforming method is employed for the wireless power transmission. In the second phase, the BS forms the two-layer receive beamformers for the reception of signals transmitted by terminals. In order to improve the spectral efficiency (SE) of the system, the BS transmit power- and time-switching ratios are optimized. Simulation results show the superiority of the proposed beam-domain SWIPT protocol on SE performance compared with the conventional mMIMO SWIPT protocols.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3294 ◽  
Author(s):  
Shidang Li ◽  
Chunguo Li ◽  
Weiqiang Tan ◽  
Baofeng Ji ◽  
Luxi Yang

Vehicle to everything (V2X) has been deemed a promising technology due to its potential to achieve traffic safety and efficiency. This paper considers a V2X downlink system with a simultaneous wireless information and power transfer (SWIPT) system where the base station not only conveys data and energy to two types of wireless vehicular receivers, such as one hybrid power-splitting vehicular receiver, and multiple energy vehicular receivers, but also prevents information from being intercepted by the potential eavesdroppers (idle energy vehicular receivers). Both the base station and the energy vehicular receivers are equipped with multiple antennas, whereas the information vehicular receiver is equipped with a single antenna. In particular, the imperfect channel state information (CSI) and the practical nonlinear energy harvesting (EH) model are taken into account. The non-convex optimization problem is formulated to maximize the minimum harvested energy power among the energy vehicular receivers satisfying the lowest harvested energy power threshold at the information vehicular receiver and secure vehicular communication requirements. In light of the intractability of the optimization problem, the semidefinite relaxation (SDR) technique and variable substitutions are applied, and the optimal solution is proven to be tight. A number of results demonstrate that the proposed robust secure beamforming scheme has better performance than other schemes.


Author(s):  
K.N Puniran ◽  
Ahmad Robiah ◽  
Rudzidatul Akmam Dziyauddin

Energy harvesting (EH) module for wireless sensor network has become a promising feature to prolong the conventional battery inside the devices. This emerging technology is gaining interest from sensor manufacturers as well as academicians across the globe. The concept of employing EH module must be cost effective and practical. In such, the use of EH module type besides RF is more realistic due to the size of the scavenger module, the availability of the resources and conversion efficiency. Most of the oil and gas plants have some drawbacks in scavenging RF from surrounding (i.e. router, Wi-Fi, base station, cell phone) due to its placement in remote area and thus limited energy sources could be a threat in this application. Multiple sources, including co-channel interference (CCI) in any constraint nodes is a feasible way of scavenging several wastes from ambient RF energy via wireless mesh topology. In this paper, a 3-node decode-and-forward (DF) model is proposed where the relay node is subject to an energy constraint. Multiple primary sources and CCI are added in the system model known as Multiple-Source and Single-Relay (MSSR). A mathematical model is derived in Time Switching Relaying (TSR) and Power Splitting Relaying (PSR) schemes to obtain an average system throughput at a destination. Numerical simulation with respect to the average throughput and EH ratio was performed and compared with the Single-Source and Single-Relay (SSSR) and ideal receiver. By applying multiple sources and CCI as an energy enhancement at the constraint node, the optimal value of EH ratio for TSR can be reduced significantly by 10% as compared to the ideal receiver whereas the optimal value of EH ratio for PSR is outweigh TSR in terms of overall system throughput.


Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 93 ◽  
Author(s):  
Na Su ◽  
Qi Zhu

This paper assumes that multiple device-to-device (D2D) users can reuse the same uplink channel and base station (BS) supplies power to D2D transmitters by means of wireless energy transmission; the optimization problem aims at maximizing the total capacity of D2D users, and proposes a power control and channel allocation algorithm for the energy harvesting D2D communications underlaying the cellular network. This algorithm firstly uses a heuristic dynamic clustering method to cluster D2D users and those in the same cluster can share the same channel. Then, D2D users in the same cluster are modeled as a non-cooperative game, the expressions of D2D users’ transmission power and energy harvesting time are derived by using the Karush–Kuhn–Tucker (KKT) condition, and the optimal transmission power and energy harvesting time are allocated to D2D users by the joint iteration optimization method. Finally, we use the Kuhn–Munkres (KM) algorithm to achieve the optimal matching between D2D clusters and cellular channel to maximize the total capacity of D2D users. Simulation results show that the proposed algorithm can effectively improve the system performance.


2019 ◽  
Vol 18 (6) ◽  
pp. 2977-2988 ◽  
Author(s):  
Saeede Enayati ◽  
Hamid Saeedi ◽  
Hossein Pishro-Nik ◽  
Halim Yanikomeroglu

2018 ◽  
Vol 17 ◽  
pp. 03015
Author(s):  
Huanhuan MAO ◽  
Pengcheng Zhu ◽  
Jiamin Li

Energy harvesting is one of the promising option for realization of green communication and has been a growing concern recently. In this paper, we address the downlink resource allocation in OFDM system with distributed antennas with hybrid power supply base station, where energy harvesting and non-renewable power sources are used complementarily. A joint subcarrier and power allocation problem is formulated for minimizing the net Energy Consumption Index (ECI) with system Quality of Service (QoS) and bit error rates constraint. The problem is a 0-1 mixed integer nonlinear programming problem due to the binary subcarrier allocation variable. To solve the problem, we design an algorithm based on Lagrange relaxation method and fraction programming which optimizes the power allocation and subcarrier allocation iteratively in two nests. Simulation results show that the proposed algorithm converges in a small number of iterations and can improve net ECI of system greatly.


Sign in / Sign up

Export Citation Format

Share Document