An Intrusion Detection System for Cyber Attacks in Wireless Networked Control Systems

2018 ◽  
Vol 65 (8) ◽  
pp. 1049-1053 ◽  
Author(s):  
Ahmad W. Al-Dabbagh ◽  
Yuzhe Li ◽  
Tongwen Chen
2020 ◽  
Vol 53 (4) ◽  
pp. 7-13
Author(s):  
Yike Li ◽  
Yin Tong ◽  
Alessandro Giua

2021 ◽  
Author(s):  
Navroop Kaur ◽  
Meenakshi Bansal ◽  
Sukhwinder Singh S

Abstract In modern times the firewall and antivirus packages are not good enough to protect the organization from numerous cyber attacks. Computer IDS (Intrusion Detection System) is a crucial aspect that contributes to the success of an organization. IDS is a software application responsible for scanning organization networks for suspicious activities and policy rupturing. IDS ensures the secure and reliable functioning of the network within an organization. IDS underwent huge transformations since its origin to cope up with the advancing computer crimes. The primary motive of IDS has been to augment the competence of detecting the attacks without endangering the performance of the network. The research paper elaborates on different types and different functions performed by the IDS. The NSL KDD dataset has been considered for training and testing. The seven prominent classifiers LR (Logistic Regression), NB (Naïve Bayes), DT (Decision Tree), AB (AdaBoost), RF (Random Forest), kNN (k Nearest Neighbor), and SVM (Support Vector Machine) have been studied along with their pros and cons and the feature selection have been imposed to enhance the reading of performance evaluation parameters (Accuracy, Precision, Recall, and F1Score). The paper elaborates a detailed flowchart and algorithm depicting the procedure to perform feature selection using XGB (Extreme Gradient Booster) for four categories of attacks: DoS (Denial of Service), Probe, R2L (Remote to Local Attack), and U2R (User to Root Attack). The selected features have been ranked as per their occurrence. The implementation have been conducted at five different ratios of 60-40%, 70-30%, 90-10%, 50-50%, and 80-20%. Different classifiers scored best for different performance evaluation parameters at different ratios. NB scored with the best Accuracy and Recall values. DT and RF consistently performed with high accuracy. NB, SVM, and kNN achieved good F1Score.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1977 ◽  
Author(s):  
Geethapriya Thamilarasu ◽  
Shiven Chawla

Cyber-attacks on the Internet of Things (IoT) are growing at an alarming rate as devices, applications, and communication networks are becoming increasingly connected and integrated. When attacks on IoT networks go undetected for longer periods, it affects availability of critical systems for end users, increases the number of data breaches and identity theft, drives up the costs and impacts the revenue. It is imperative to detect attacks on IoT systems in near real time to provide effective security and defense. In this paper, we develop an intelligent intrusion-detection system tailored to the IoT environment. Specifically, we use a deep-learning algorithm to detect malicious traffic in IoT networks. The detection solution provides security as a service and facilitates interoperability between various network communication protocols used in IoT. We evaluate our proposed detection framework using both real-network traces for providing a proof of concept, and using simulation for providing evidence of its scalability. Our experimental results confirm that the proposed intrusion-detection system can detect real-world intrusions effectively.


2021 ◽  
Vol 1 (1) ◽  
pp. 61-74
Author(s):  
Sohrab Mokhtari ◽  
◽  
Kang K Yen

<abstract><p>Anomaly detection strategies in industrial control systems mainly investigate the transmitting network traffic called network intrusion detection system. However, The measurement intrusion detection system inspects the sensors data integrated into the supervisory control and data acquisition center to find any abnormal behavior. An approach to detect anomalies in the measurement data is training supervised learning models that can learn to classify normal and abnormal data. But, a labeled dataset consisting of abnormal behavior, such as attacks, or malfunctions is extremely hard to achieve. Therefore, the unsupervised learning strategy that does not require labeled data for being trained can be helpful to tackle this problem. This study evaluates the performance of unsupervised learning strategies in anomaly detection using measurement data in control systems. The most accurate algorithms are selected to train unsupervised learning models, and the results show an accuracy of 98% in stealthy attack detection.</p></abstract>


2020 ◽  
Author(s):  
Luís Felipe Prado D'Andrada ◽  
Paulo Freitas de Araujo-Filho ◽  
Divanilson Rodrigo Campelo

The Controller Area Network (CAN) is the most pervasive in-vehiclenetwork technology in cars. However, since CAN was designed with no securityconcerns, solutions to mitigate cyber attacks on CAN networks have been pro-posed. Prior works have shown that detecting anomalies in the CAN networktraffic is a promising solution for increasing vehicle security. One of the mainchallenges in preventing a malicious CAN frame transmission is to be able todetect the anomaly before the end of the frame. This paper presents a real-timeanomaly-based Intrusion Detection System (IDS) capable of meeting this dead-line by using the Isolation Forest detection algorithm implemented in a hardwaredescription language. A true positive rate higher than 99% is achieved in testscenarios. The system requires less than 1μs to evaluate a frame’s payload, thusbeing able to detect the anomaly before the end of the frame.


Sign in / Sign up

Export Citation Format

Share Document