scholarly journals VDM-DA: Virtual Domain Modeling for Source Data-free Domain Adaptation

Author(s):  
Jiayi Tian ◽  
Jing Zhang ◽  
Wen Li ◽  
Dong Xu
2021 ◽  
pp. 108436
Author(s):  
Lin Xiong ◽  
Mao Ye ◽  
Dan Zhang ◽  
Yan Gan ◽  
Yiguang Liu

Author(s):  
Jogendra Nath Kundu ◽  
Naveen Venkat ◽  
M. V. Rahul ◽  
R. Venkatesh Babu

2020 ◽  
Vol 39 (6) ◽  
pp. 8149-8159
Author(s):  
Ping Li ◽  
Zhiwei Ni ◽  
Xuhui Zhu ◽  
Juan Song

Domain adaptation (DA) aims to train a robust predictor by transferring rich knowledge from a well-labeled source domain to annotate a newly coming target domain; however, the two domains are usually drawn from very different distributions. Most current methods either learn the common features by matching inter-domain feature distributions and training the classifier separately or align inter-domain label distributions to directly obtain an adaptive classifier based on the original features despite feature distortion. Moreover, intra-domain information may be greatly degraded during the DA process; i.e., the source data samples from different classes might grow closer. To this end, this paper proposes a novel DA approach, referred to as inter-class distribution alienation and inter-domain distribution alignment based on manifold embedding (IDAME). Specifically, IDAME commits to adapting the classifier on the Grassmann manifold by using structural risk minimization, where inter-domain feature distributions are aligned to mitigate feature distortion, and the target pseudo labels are exploited using the distances on the Grassmann manifold. During the classifier adaptation process, we simultaneously consider the inter-class distribution alienation, the inter-domain distribution alignment, and the manifold consistency. Extensive experiments validate that IDAME can outperform several comparative state-of-the-art methods on real-world cross-domain image datasets.


Author(s):  
Reza Mazloom ◽  
Hongmin Li ◽  
Doina Caragea ◽  
Cornelia Caragea ◽  
Muhammad Imran

Huge amounts of data generated on social media during emergency situations is regarded as a trove of critical information. The use of supervised machine learning techniques in the early stages of a crisis is challenged by the lack of labeled data for that event. Furthermore, supervised models trained on labeled data from a prior crisis may not produce accurate results, due to inherent crisis variations. To address these challenges, the authors propose a hybrid feature-instance-parameter adaptation approach based on matrix factorization, k-nearest neighbors, and self-training. The proposed feature-instance adaptation selects a subset of the source crisis data that is representative for the target crisis data. The selected labeled source data, together with unlabeled target data, are used to learn self-training domain adaptation classifiers for the target crisis. Experimental results have shown that overall the hybrid domain adaptation classifiers perform better than the supervised classifiers learned from the original source data.


2013 ◽  
Vol 22 (05) ◽  
pp. 1360005 ◽  
Author(s):  
AMAURY HABRARD ◽  
JEAN-PHILIPPE PEYRACHE ◽  
MARC SEBBAN

A strong assumption to derive generalization guarantees in the standard PAC framework is that training (or source) data and test (or target) data are drawn according to the same distribution. Because of the presence of possibly outdated data in the training set, or the use of biased collections, this assumption is often violated in real-world applications leading to different source and target distributions. To go around this problem, a new research area known as Domain Adaptation (DA) has recently been introduced giving rise to many adaptation algorithms and theoretical results in the form of generalization bounds. This paper deals with self-labeling DA whose goal is to iteratively incorporate semi-labeled target data in the learning set to progressively adapt the classifier from the source to the target domain. The contribution of this work is three-fold: First, we provide the minimum and necessary theoretical conditions for a self-labeling DA algorithm to perform an actual domain adaptation. Second, following these theoretical recommendations, we design a new iterative DA algorithm, called GESIDA, able to deal with structured data. This algorithm makes use of the new theory of learning with (ε,γ,τ)-good similarity functions introduced by Balcan et al., which does not require the use of a valid kernel to learn well and allows us to induce sparse models. Finally, we apply our algorithm on a structured image classification task and show that self-labeling domain adaptation is a new original way to deal with scaling and rotation problems.


2021 ◽  
Author(s):  
◽  
Muhammad Ghifary

<p>Machine learning has achieved great successes in the area of computer vision, especially in object recognition or classification. One of the core factors of the successes is the availability of massive labeled image or video data for training, collected manually by human. Labeling source training data, however, can be expensive and time consuming. Furthermore, a large amount of labeled source data may not always guarantee traditional machine learning techniques to generalize well; there is a potential bias or mismatch in the data, i.e., the training data do not represent the target environment.  To mitigate the above dataset bias/mismatch, one can consider domain adaptation: utilizing labeled training data and unlabeled target data to develop a well-performing classifier on the target environment. In some cases, however, the unlabeled target data are nonexistent, but multiple labeled sources of data exist. Such situations can be addressed by domain generalization: using multiple source training sets to produce a classifier that generalizes on the unseen target domain. Although several domain adaptation and generalization approaches have been proposed, the domain mismatch in object recognition remains a challenging, open problem – the model performance has yet reached to a satisfactory level in real world applications.  The overall goal of this thesis is to progress towards solving dataset bias in visual object recognition through representation learning in the context of domain adaptation and domain generalization. Representation learning is concerned with finding proper data representations or features via learning rather than via engineering by human experts. This thesis proposes several representation learning solutions based on deep learning and kernel methods.  This thesis introduces a robust-to-noise deep neural network for handwritten digit classification trained on “clean” images only, which we name Deep Hybrid Network (DHN). DHNs are based on a particular combination of sparse autoencoders and restricted Boltzmann machines. The results show that DHN performs better than the standard deep neural network in recognizing digits with Gaussian and impulse noise, block and border occlusions.  This thesis proposes the Domain Adaptive Neural Network (DaNN), a neural network based domain adaptation algorithm that minimizes the classification error and the domain discrepancy between the source and target data representations. The experiments show the competitiveness of DaNN against several state-of-the-art methods on a benchmark object dataset.  This thesis develops the Multi-task Autoencoder (MTAE), a domain generalization algorithm based on autoencoders trained via multi-task learning. MTAE learns to transform the original image into its analogs in multiple related domains simultaneously. The results show that the MTAE’s representations provide better classification performance than some alternative autoencoder-based models as well as the current state-of-the-art domain generalization algorithms.  This thesis proposes a fast kernel-based representation learning algorithm for both domain adaptation and domain generalization, Scatter Component Analysis (SCA). SCA finds a data representation that trades between maximizing the separability of classes, minimizing the mismatch between domains, and maximizing the separability of the whole data points. The results show that SCA performs much faster than some competitive algorithms, while providing state-of-the-art accuracy in both domain adaptation and domain generalization.  Finally, this thesis presents the Deep Reconstruction-Classification Network (DRCN), a deep convolutional network for domain adaptation. DRCN learns to classify labeled source data and also to reconstruct unlabeled target data via a shared encoding representation. The results show that DRCN provides competitive or better performance than the prior state-of-the-art model on several cross-domain object datasets.</p>


Sign in / Sign up

Export Citation Format

Share Document