Investigation on Dynamic Diffusion Behavior of Furfural in Oil-Pressboard Insulation under Partial Oil Replacement Condition

2021 ◽  
Vol 28 (3) ◽  
pp. 1044-1052
Author(s):  
Jiefeng Liu ◽  
Chuhan Geng ◽  
Xianhao Fan ◽  
Yiyi Zhang ◽  
Heng Zhang
2020 ◽  
Vol 69 (12) ◽  
pp. 2286-2293
Author(s):  
A. V. Severin ◽  
A. N. Vasiliev ◽  
A. V. Gopin ◽  
K. I. Enikeev

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 454
Author(s):  
Bo Yu ◽  
Ya Liu ◽  
Lianqi Wei ◽  
Xiaomeng Zhang ◽  
Yingchao Du ◽  
...  

In this paper, a mechanism of anti-oxidation coating design based on the inhibition effect of the interface layer on the diffusion of ions within oxide scale was introduced. The Fe2+ ions diffusion behavior in Fe3O4, Cr2FeO4, and FeAl2O4 were studied by molecular dynamics method of Nudged elastic bond. As the result shown, Fe2+ ions tended to diffuse through the vacancy at tetrahedral site in Cr2FeO4 and FeAl2O4, but diffuse through the octahedral vacancy in Fe3O4. When temperature ranged from 1073 to 1325 K, the energy barrier of Fe2+ ions diffusion in Cr2FeO4 was higher than that of FeAl2O4, and both of that were still obvious higher than that in Fe3O4. A new anti-oxidation coating was prepared based on the inhibition of interface layer consisted of FeAl2O4 to protect the carbon steel S235JR at 1200 °C for 2 h. The FeAl2O4 region was formed and observed at the interface between coating and Fe element diffusion area, and the mullite phase was distributed outside of the FeAl2O4 region. Comparing to the bare sample, the prepared coating exhibited an excellent anti-oxidation effect.


2021 ◽  
Vol 67 ◽  
pp. 35-45
Author(s):  
Shuangjie Zhang ◽  
Wei Wang ◽  
Shibo Ma ◽  
Qiang Li

2014 ◽  
Vol 26 (2) ◽  
pp. 87-95 ◽  
Author(s):  
J. Mittal ◽  
K.L. Lin

Purpose – This paper aims to compare the reflow and Zn diffusion behaviors in Sn-Zn and Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga (5E) solders during soldering on a Ni/Cu substrate under infrared (IR) reflow. The study proposes a model on the effect of various elements particularly Zn diffusion behavior in the solders on the formation of intermetallic compounds (IMCs). Design/methodology/approach – The melting activities of two solders near their melting points on copper substrates are visualized in an IR reflow furnace. Reflowed solder joints were analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy. Findings – Reflow behaviors of the solders are similar. During melting, solder balls are first merged into each other and then reflow on the substrate from top to bottom. Both solders show a reduced amount of Zn in the solder. Theoretical calculations demonstrate a higher Zn diffusion in the 5E solder; however, the amount of Zn actually observed at the solder/substrate interface is lower than Sn-9Zn solder due to the formation of ZnAg3 in the solder. A thinner IMC layer is formed at the interface in the 5E solder than the Sn-Zn solder. Research limitations/implications – The present work compares the 5E solder only with Sn-Zn solder. Additional research work may be required to compare 5E solder with other solders like Sn-Ag, SnAgCu, etc. to further establish its practical applications. Practical implications – The study ascertains the advantages of 5E solder over Sn-Zn solder for all practical applications. Originality/value – The significance of this paper is the understanding of the relation between reflow behavior of solders and reactivity of different elements in the solder alloys and substrate to form various IMCs and their influence on the formation of IMC layer at solder/substrate interface. Emphasis is provided for the diffusion behavior of Zn during reflow and respective reaction mechanisms.


Sign in / Sign up

Export Citation Format

Share Document