Numerical Modeling of Thermoelectric Generators With Varing Material Properties in a Circuit Simulator

2009 ◽  
Vol 24 (1) ◽  
pp. 112-124 ◽  
Author(s):  
Min Chen ◽  
L.A. Rosendahl ◽  
T.J. Condra ◽  
J.K. Pedersen
Author(s):  
Young H. Park ◽  
Wesley Morgan

In this paper, effective moduli of cracked solid material were investigated. An analytical approach is discussed for a cracked solid containing randomly oriented inclusions by using elastic potential and a standard tensorial basis. A numerical simulation of the testing of mechanical responses of samples of cracked solid material (porous material) is also carried out. The numerical scheme in this work will focus mainly on numerical modeling of the observed behavior, in particular, the dependence of the macroscopic material properties on the porocity.


2013 ◽  
Vol 42 (4) ◽  
pp. 665-674 ◽  
Author(s):  
Sumeet Kumar ◽  
Stephen D. Heister ◽  
Xianfan Xu ◽  
James R. Salvador ◽  
Gregory P. Meisner

Author(s):  
H. Peter J. De Bock ◽  
Vladimir Novak

Recent developments in thermoelectric materials and systems have led to renewed interest in thermoelectric devices for power generation. Operating conditions of the heat source and heat sink are essential in evaluating the conversion efficiency of such thermoelectric generator systems. This study provides a method for evaluating efficiency entitlement for thermoelectric power generation when thermoelectric material properties and system operating conditions are specified. The efficiency entitlement in closed form solutions for the most commonly used thermoelectric power generation configurations are presented followed by results and discussion.


Respuestas ◽  
2020 ◽  
Vol 25 (3) ◽  
Author(s):  
Byron Medina-Delgado ◽  
Guillermo Valencia-Ochoa ◽  
Jorge Duarte-Forero

The present study analyzed the effect of material properties in the energy conversion process of Thermoelectric Generators (TEGs). For the development of the study, two materials whose properties vary with respect to temperature (Bi0.4Sb1.6Te3 and Cu11NiSb4S13) and a material with constant properties (Bi2Te3) were analyzed. Through numerical simulation processes, each material was subjected to different temperature differences to monitor the effect on the electrical output power, heat flux, and energy conversion efficiency. The results showed that neglecting the temperature dependence produces higher or lower performance estimations depending on the temperature levels experienced by the TEG.  Overall, the material Bi2Te3 displayed 35% more electrical power output and conversion efficiency compared to the Bi0.4Sb1.6Te3 material. Therefore, considering the variability of thermoelectric materials demonstrated to be essential to obtain realistic process performance. Also, the heat flux produced by the Fourier effect presents the most significant impact on the electrical power generation of the TEG. Among materials with variable properties, the Bi0.4Sb1.6Te3 increases the conversion efficiency up to 25% compared to the Cu11NiSb4S13. In conclusion, the study of material properties using numerical simulations emerged as a robust and practical tool to evaluate TEG performance.


Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


Sign in / Sign up

Export Citation Format

Share Document