Investigating Ferroelectric Minor Loop Dynamics and History Effect—Part I: Device Characterization

2020 ◽  
Vol 67 (9) ◽  
pp. 3592-3597 ◽  
Author(s):  
Panni Wang ◽  
Zheng Wang ◽  
Xiaoyu Sun ◽  
Jae Hur ◽  
Suman Datta ◽  
...  
2022 ◽  
Author(s):  
Shubham Sahay ◽  
Amol Gaidhane ◽  
Yogesh Singh Chauhan ◽  
Raghvendra Dangi ◽  
Amit Verma

<div>In this paper, we develop a Verilog-A implementable compact model for the dynamic switching of ferroelectric Fin-FETs (Fe-FinFETs) for asymmetric non-periodic input signals. We use the multi-domain Preisach Model to capture the saturated P-E loop of the ferroelectric capacitors. In addition to the saturation loop, we model the history dependent minor loop paths in the P-E by tracing input signals’ turning points. To capture the input signals’ turning points, we propose an R-C circuit based approach in this work. We calibrate our proposed model with the experimental data, and it accurately captures the history effect and minor loop paths of the ferroelectric capacitor. Furthermore, the elimination of storage of each turning point makes the proposed model computationally efficient compared with the previous implementations. We also demonstrate the unique electrical characteristics of Fe-FinFETs by integrating the developed compact model of Fe-Cap with the BSIM-CMG model of 7nm FinFET.</div>


2022 ◽  
Author(s):  
Shubham Sahay ◽  
Amol Gaidhane ◽  
Yogesh Singh Chauhan ◽  
Raghvendra Dangi ◽  
Amit Verma

<div>In this paper, we develop a Verilog-A implementable compact model for the dynamic switching of ferroelectric Fin-FETs (Fe-FinFETs) for asymmetric non-periodic input signals. We use the multi-domain Preisach Model to capture the saturated P-E loop of the ferroelectric capacitors. In addition to the saturation loop, we model the history dependent minor loop paths in the P-E by tracing input signals’ turning points. To capture the input signals’ turning points, we propose an R-C circuit based approach in this work. We calibrate our proposed model with the experimental data, and it accurately captures the history effect and minor loop paths of the ferroelectric capacitor. Furthermore, the elimination of storage of each turning point makes the proposed model computationally efficient compared with the previous implementations. We also demonstrate the unique electrical characteristics of Fe-FinFETs by integrating the developed compact model of Fe-Cap with the BSIM-CMG model of 7nm FinFET.</div>


2017 ◽  
Vol 53 (5) ◽  
pp. 4547-4558 ◽  
Author(s):  
Nicola Bedetti ◽  
Sandro Calligaro ◽  
Christian Olsen ◽  
Roberto Petrella
Keyword(s):  

Author(s):  
Soumajit Ghosh ◽  
Mitiko Miura-Mattausch ◽  
Takahiro Iizuka ◽  
Hideyuki Kikuchihara ◽  
Hafizur Rahaman ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 832
Author(s):  
Nina Moravčíková ◽  
Radovan Kasarda ◽  
Radoslav Židek ◽  
Luboš Vostrý ◽  
Hana Vostrá-Vydrová ◽  
...  

This study focused on the genomic differences between the Czechoslovakian wolfdog (CWD) and its ancestors, the Grey wolf (GW) and German Shepherd dog. The Saarloos wolfdog and Belgian Shepherd dog were also included to study the level of GW genetics retained in the genome of domesticated breeds. The dataset consisted of 131 animals and 143,593 single nucleotide polymorphisms (SNPs). The effects of demographic history on the overall genome structure were determined by screening the distribution of the homozygous segments. The genetic variance distributed within and between groups was quantified by genetic distances, the FST index, and discriminant analysis of principal components. Fine-scale population stratification due to specific morphological and behavioural traits was assessed by principal component and factorial analyses. In the CWD, a demographic history effect was manifested mainly in a high genome-wide proportion of short homozygous segments corresponding to a historical load of inbreeding derived from founders. The observed proportion of long homozygous segments indicated that the inbreeding events shaped the CWD genome relatively recently compared to other groups. Even if there was a significant increase in genetic similarity among wolf-like breeds, they were genetically separated from each other. Moreover, this study showed that the CWD genome carries private alleles that are not found in either wolves or other dog breeds analysed in this study.


1990 ◽  
Vol 29 (21) ◽  
pp. 3110
Author(s):  
Eric T. Koenig ◽  
Mohammad A. Karim

Sign in / Sign up

Export Citation Format

Share Document