Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques

2005 ◽  
Vol 43 (5) ◽  
pp. 1059-1069 ◽  
Author(s):  
F.J. Turk ◽  
S.D. Miller
2007 ◽  
Vol 109 (3) ◽  
pp. 314-327 ◽  
Author(s):  
Izaya Numata ◽  
Dar A. Roberts ◽  
Oliver A. Chadwick ◽  
Josh Schimel ◽  
Fernando R. Sampaio ◽  
...  

2010 ◽  
Vol 2 (2) ◽  
pp. 388-415 ◽  
Author(s):  
Willem J.D. Van Leeuwen ◽  
Jennifer E. Davison ◽  
Grant M. Casady ◽  
Stuart E. Marsh

2018 ◽  
Vol 9 (8) ◽  
pp. 743-752 ◽  
Author(s):  
Mohamed ElSaadani ◽  
Witold F. Krajewski ◽  
Dale L. Zimmerman

2020 ◽  
Author(s):  
Haojin Zhao ◽  
Roland Baatz ◽  
Carsten Montzka ◽  
Harry Vereecken ◽  
Harrie-Jan Hendricks Franssen

<p>Soil moisture plays an important role in the coupled water and energy cycles of the terrestrial system. However, the characterization of soil moisture at the large spatial scale is far from trivial. To cope with this challenge, the combination of data from different sources (in situ measurements by cosmic ray neutron sensors, remotely sensed soil moisture and simulated soil moisture by models) is pursued. This is done by multiscale data assimilation, to take the different resolutions of the data into account. A large number of studies on the assimilation of remotely sensed soil moisture in land surface models has been published, which show in general only a limited improvement in the characterization of root zone soil moisture, and no improvement in the characterization of evapotranspiration. In this study it was investigated whether an improved modelling of soil moisture content, using a simulation model where the interactions between the land surface, surface water and groundwater are better represented, can contribute to extracting more information from SMAP data. In this study over North-Rhine-Westphalia, the assimilation of remotely sensed soil moisture from SMAP in the coupled land surface-subsurface model TSMP was tested. Results were compared with the assimilation in the stand-alone land surface model CLM. It was also tested whether soil hydraulic parameter estimation in combination with state updating could give additional skill compared to assimilation in CLM stand-alone and without parameter updating. Results showed that modelled soil moisture by TSMP did not show a systematic bias compared to SMAP, whereas CLM was systematically wetter than TSMP. Therefore, no prior bias correction was needed in the data assimilation. The results illustrate how the difference in simulation model and parameter estimation result in significantly different estimated soil moisture contents and evapotranspiration.  </p>


Fractals ◽  
2002 ◽  
Vol 10 (03) ◽  
pp. 265-274 ◽  
Author(s):  
DANY C. HARVEY ◽  
HÉLÈNE GAONAC'H ◽  
SHAUN LOVEJOY ◽  
JOHN STIX ◽  
DANIEL SCHERTZER

We used a multifractal approach to characterize scale by scale, the remotely sensed visible and thermal-infrared volcanic field, at Kilauea Volcano, Hawaii, USA. Our results show that (1) the observed fields exhibit a scaling behavior over a resolution range of ~ 2.5 m to 6 km, (2) they show a strong multifractality, (3) the multifractal parameters α, C1 and H are sensitive to volcanic structural classes such as vent cones, lava ponds and active to inactive lava flows, (4) vegetation area and volcanic gas plumes have a strong effect on the multifractal estimates, and (5) vegetation and cloud-free images show statistical characteristics due to topography related albedo in the visible and predominantly solar heating in the thermal infrared wavelengths.


Sign in / Sign up

Export Citation Format

Share Document