Assimilation of SAR Ice and Open Water Retrievals in Environment and Climate Change Canada Regional Ice-Ocean Prediction System

2020 ◽  
Vol 58 (6) ◽  
pp. 4290-4303
Author(s):  
Alexander S. Komarov ◽  
Alain Caya ◽  
Mark Buehner ◽  
Lynn Pogson
BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna L. K. Nilsson ◽  
Thomas Skaugen ◽  
Trond Reitan ◽  
Jan Henning L’Abée-Lund ◽  
Marlène Gamelon ◽  
...  

Abstract Background Earlier breeding is one of the strongest responses to global change in birds and is a key factor determining reproductive success. In most studies of climate effects, the focus has been on large-scale environmental indices or temperature averaged over large geographical areas, neglecting that animals are affected by the local conditions in their home ranges. In riverine ecosystems, climate change is altering the flow regime, in addition to changes resulting from the increasing demand for renewable and clean hydropower. Together with increasing temperatures, this can lead to shifts in the time window available for successful breeding of birds associated with the riverine habitat. Here, we investigated specifically how the environmental conditions at the territory level influence timing of breeding in a passerine bird with an aquatic lifestyle, the white-throated dipper Cinclus cinclus. We relate daily river discharge and other important hydrological parameters, to a long-term dataset of breeding phenology (1978–2015) in a natural river system. Results Dippers bred earlier when winter river discharge and groundwater levels in the weeks prior to breeding were high, and when there was little snow in the catchment area. Breeding was also earlier at lower altitudes, although the effect dramatically declined over the period. This suggests that territories at higher altitudes had more open water in winter later in the study period, which permitted early breeding also here. Unexpectedly, the largest effect inducing earlier breeding time was territory river discharge during the winter months and not immediately prior to breeding. The territory river discharge also increased during the study period. Conclusions The observed earlier breeding can thus be interpreted as a response to climate change. Measuring environmental variation at the scale of the territory thus provides detailed information about the interactions between organisms and the abiotic environment.


Ocean Science ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 925-945 ◽  
Author(s):  
Reiner Onken

Abstract. A relocatable ocean prediction system (ROPS) was employed to an observational data set which was collected in June 2014 in the waters to the west of Sardinia (western Mediterranean) in the framework of the REP14-MED experiment. The observational data, comprising more than 6000 temperature and salinity profiles from a fleet of underwater gliders and shipborne probes, were assimilated in the Regional Ocean Modeling System (ROMS), which is the heart of ROPS, and verified against independent observations from ScanFish tows by means of the forecast skill score as defined by Murphy(1993). A simplified objective analysis (OA) method was utilised for assimilation, taking account of only those profiles which were located within a predetermined time window W. As a result of a sensitivity study, the highest skill score was obtained for a correlation length scale C = 12.5 km, W = 24 h, and r = 1, where r is the ratio between the error of the observations and the background error, both for temperature and salinity. Additional ROPS runs showed that (i) the skill score of assimilation runs was mostly higher than the score of a control run without assimilation, (i) the skill score increased with increasing forecast range, and (iii) the skill score for temperature was higher than the score for salinity in the majority of cases. Further on, it is demonstrated that the vast number of observations can be managed by the applied OA method without data reduction, enabling timely operational forecasts even on a commercially available personal computer or a laptop.


2020 ◽  
Vol 66 (260) ◽  
pp. 1079-1079
Author(s):  
Longjiang Mu ◽  
Xi Liang ◽  
Qinghua Yang ◽  
Jiping Liu ◽  
Fei Zheng

2014 ◽  
Vol 71 (7) ◽  
pp. 1934-1955 ◽  
Author(s):  
Margaret M. McBride ◽  
Padmini Dalpadado ◽  
Kenneth F. Drinkwater ◽  
Olav Rune Godø ◽  
Alistair J. Hobday ◽  
...  

Abstract Arctic and Antarctic marine systems have in common high latitudes, large seasonal changes in light levels, cold air and sea temperatures, and sea ice. In other ways, however, they are strikingly different, including their: age, extent, geological structure, ice stability, and foodweb structure. Both regions contain very rapidly warming areas and climate impacts have been reported, as have dramatic future projections. However, the combined effects of a changing climate on oceanographic processes and foodweb dynamics are likely to influence their future fisheries in very different ways. Differences in the life-history strategies of the key zooplankton species (Antarctic krill in the Southern Ocean and Calanus copepods in the Arctic) will likely affect future productivity of fishery species and fisheries. To explore future scenarios for each region, this paper: (i) considers differing characteristics (including geographic, physical, and biological) that define polar marine ecosystems and reviews known and projected impacts of climate change on key zooplankton species that may impact fished species; (ii) summarizes existing fishery resources; (iii) synthesizes this information to generate future scenarios for fisheries; and (iv) considers the implications for future fisheries management. Published studies suggest that if an increase in open water during summer in Arctic and Subarctic seas results in increased primary and secondary production, biomass may increase for some important commercial fish stocks and new mixes of species may become targeted. In contrast, published studies suggest that in the Southern Ocean the potential for existing species to adapt is mixed and that the potential for the invasion of large and highly productive pelagic finfish species appears low. Thus, future Southern Ocean fisheries may largely be dependent on existing species. It is clear from this review that new management approaches will be needed that account for the changing dynamics in these regions under climate change.


Author(s):  
R. Allard ◽  
J. Christiansen ◽  
T. Taxon ◽  
S. Williams ◽  
D. Wakeham

2020 ◽  
Author(s):  
Gregory C. Smith ◽  
Yimin Liu ◽  
Mounir Benkiran ◽  
Kamel Chikhar ◽  
Dorina Surcel Colan ◽  
...  

Abstract. Canada has the longest coastline in the world and includes a diversity of ocean environments, from the frozen waters of the Canadian Arctic Archipelago to the confluence region of Labrador and Gulf Stream waters on the East Coast. There is a strong need for a pan-Canadian operational regional ocean prediction capacity covering all Canadian coastal areas, in support of marine activities including emergency response, search and rescue as well as safe navigation in ice-infested waters. Here we present the first pan-Canadian operational regional ocean analysis system developed as part of the Regional Ice Ocean Prediction System version 2 (RIOPSv2) running in operations at the Canadian Centre for Meteorological and Environmental Prediction (CCMEP). The RIOPSv2 domain extends from 26° N in the Atlantic Ocean through the Arctic Ocean to 44° N in the Pacific Ocean, with a model grid-resolution that varies between 3 and 8 km. RIOPSv2 includes a multi-variate data assimilation system based on a reduced-order extended Kalman filter together with a 3DVar bias correction system for water mass properties. The analysis system assimilates satellite observations of sea level anomaly and sea surface temperature, as well as in situ temperature and salinity measurements. Background model error is specified in terms of seasonally varying model anomalies from a 10-year forced model integration allowing inhomogeneous anisotropic multi-variate error covariances. A novel online tidal harmonic analysis method is introduced that uses a sliding-window approach to reduce numerical costs and to allow time-varying harmonic constants, necessary in seasonally ice-infested waters. As compared to the Global Ice Ocean Prediction System (GIOPS) running at CCMEP, RIOPSv2 also includes a spatial filtering of model fields as part of the observation operator for sea surface temperature. In addition to the tidal harmonic analysis, the observation operator for sea level anomaly is also modified to remove the inverse barometer effect due to the application of atmospheric pressure forcing fields. RIOPSv2 is compared to GIOPS and shown to provide similar innovation statistics over a 3-year evaluation period. Specific improvements are found in the vicinity of the Gulf Stream for all model fields due to the higher model grid-resolution, with smaller root-mean-squared (RMS) innovations for RIOPSv2 of about 5 cm for SLA and 0.5 °C for SST. Verification against along-track satellite observations demonstrates the improved representation of meso-scale features in RIOPSv2 compared to GIOPS, with increased correlations of SLA (0.83 compared to 0.73) and reduced RMS differences (12 cm compared to 14 cm). While the RIOPSv2 grid resolution is 3 times higher than GIOPS, the power spectral density of surface kinetic energy provides an indication that the effective resolution of RIOPSv2 is roughly double that of the global system (35 km as compared to 66 km). Observations made as part of the Year of Polar Prediction (2017–19) provide a rare glimpse at errors in Arctic water mass properties and show salinity biases of 0.3–0.4 psu in the eastern Beaufort Sea in RIOPSv2.


2020 ◽  
Author(s):  
Eyal Amsalem ◽  
Gil Rilov

1.AbstractClimate change threatens the resilience of species, especially at their warm distributional edge in extreme environments. However, not much is known about the thermal vulnerability of marine intertidal species at this edge. We investigated the thermal vulnerability of the tidepool shrimp, Palaemon elegans in the fast-warming southeastern Mediterranean, its warm distributional edge. Tidepool organisms experience strong and fast thermal fluctuations. This might make them more resilient to change, but also bring them closer to their thermal limits during extreme conditions. To test the shrimp’s resilience, we tested three hypotheses: (1) P. elegance in the southeast Mediterranean has higher critical thermal maximum (CTMax) than in cooler regions, (2) the shrimp possess seasonal acclimatization, but (3) long exposure to extreme summer temperatures might erode its thermal performance making it vulnerable to future climate change. We characterized the shrimp’s thermal environment and population dynamics, determined CTMax and tested diverse physiological performance attributes (respiration, digestion, activity, growth) under a wide range of temperatures during winter and summer. P. elegans has a wide optimum performance range between 20-30°C during summer and its CTMax is 38.1°C, higher than its Atlantic counterparts. However, its warming tolerance is only 0.3°C, indicating low capacity for dealing with further warming in pools compared to northeast Atlantic populations that have wider tolerance. Prolonged exposure to current mean summer values in open water (∼ 32°C) would also significantly reduce its performance and increase mortality. This suggests that its population viability may be reduced under continuous regional warming and intensification of extreme events.


Sign in / Sign up

Export Citation Format

Share Document